Energy balance of microalgae biofuels

Project description

The production of biofuels from microalgae requires currently more energy than is stored in the fuel. Can future developments overcome this hurdle? Annika Weiss’ analysis of the correlation between energy input and output provides new evidence.

Microalgae are discussed as feedstock for biofuels. In contrary to land plants, they do not compete with food production for fertile soil. However, the energy demand to produce biofuels from algae is currently higher than the energy stored in the fuel – the quotient of these values, the so called net energy ratio (NER) is above one, but should be smaller than one for an effective fuel production. Previous studies come to different conclusions whether this will be possible in the future.

The NER depends strongly on (i) the biomass yield and (ii) the energy to cultivate (mix and gas) algae.

Annika Weiss analyses in her dissertation how the yield depends on the cultivation energy. Based on that, she calculates the NER with the method of Live Cycle Assessment (LCA). She focused her analysis on aerated flat plate photobioreactors as promising systems for outdoor cultivation and biomethane as biofuel since its production requires comparably low energy.

Results show: the more biomass is produced, the more energy is required in relation to the biomass. In other words: the energy-efficiency of microalgae cultivation sinks with increasing yield. A low NER can consequently not be achieved with maximum biomass yields. Due to this correlation a low NER can – in contrary to the prevalent assumption – not be achieved with maximum biomass yields. In the investigated case, a NER below one is not achieved despite assumed technology development and a good relation between energy input and yield. Consequently, energy production with microalgae is not feasible.

Annika Weiss analyzed in her dissertation seven other LCA studies which partially predict a net energy output (a NER below one). She found two reasons for this: either not all energy-relevant processes are considered in the calculation and/or the relation between operation energy and yield is neglected.

Bibliographic reference:

Weiss, A.
Energy balance of microalgae biofuels (Dissertation). Darmstadt: Technische Universität Darmstadt 2016
abstract englisch/htm full text/pdf

Administrative data

Supervisor: Prof Dr. Liselotte Schebek
Advisor: Prof. Dr. Peter Cornel
Related projects: HydroMicPro, Energetic Algae
Doctoral students at ITAS: See Doctoral studies at ITAS

Publications


2016
Books
Weiss, A.
Energy balance of microalgae biofuels
2016. Technische Universität Darmstadt (TU Darmstadt) 
2013
Presentations
Weiss, A.
Energie aus Mikroalgen. Unsicherheit in LCA reduzieren
2013. Ökobilanz Werkstatt, Graz, A, 23.-25. September 2013 
2012
Book Chapters
Weiss, A.
Beiträge der Energieerzeugung mit Mikroalgen zu nachhaltiger Energieversorgung und -nutzung?
2012. Der Systemblick auf Innovation : Technikfolgenabschätzung in der Technikgestaltung. Hrsg.: M. Decker, 451–454, edition sigma 
Presentations
Weiss, A.
Mikroalgen - Grenzen des Wachstums. Systemanalytische Betrachtungen zu Energieträgern aus Mikroalgen
2012. 8. Ökobilanzwerkstatt des Fraunhofer Institut für Bauphysik (2012), Stuttgart, Germany, September 4–6, 2012 
Weiss, A.; Patyk, A.; Schebek, L.
Energy balances of different photobioreactor- and process designs for algae biofuel production
2012. 9th European Workshop Biotechnology of Microalgae, Nuthetal, June 4-5, 2012 
2011
Conference Papers
Weiss, A.; Patyk, A.; Schebek, L.
Potentials of microalgae for sustainable energy production
2011. Proceedings of the Life cycle management-Conference, 28.-31.08.2011. Hrsg.: LCM (Life Cycle Management) 2011, Life Cycle Management Conf.2011 (LCM 2011), Berlin, August 28-31, 2011 Papers publ.online 
Presentations
Weiss, A.
LCA of energy from microalgae
2011. EABA Algae Biomass Conference and Expo (2011), Brussels, Belgium, November 29–30, 2011 
Weiss, A.; Patyk, A.; Schebek, L.
Potentials of microalgae for sustainable bioenergy production
2011. Life Cycle Management Conf.2011 (LCM 2011), Berlin, August 28-31, 2011, Life Cycle Management (LCM 2011), Berlin, Germany, August 28–31, 2011 
Posters
Weiss, A.; Patyk, A.; Schebek, L.
Energy production from microalgae - a contribution to a sustainable energy supply?
2011. 21st SETAC Europe Annual Meeting (2011), Milan, Italy, May 15–19, 2011 
2010
Posters
Weiss, A.; Patyk, A.; Schebek, L.
Energieerzeugung mit Mikroalgen - ein Beitrag zu nachhaltiger Energieversorgung?
2010. 4. Konferenz des Netzwerks TA (NTA4): “Technikfolgenabschätzung in der Technikgestaltung” (2010), Berlin, Germany, November 24–26, 2010 

Contact

Dr.-Ing. Annika Weiss
Karlsruhe Institute of Technology (KIT)
Institute for Technology Assessment and Systems Analysis (ITAS)
P.O. Box 3640
76021 Karlsruhe
Germany