

Use of SLCA for a Comparative Sustainability Analysis of Technologies

Annekatrin Lehmann, René Scheumann, Matthias Finkbeiner

International Seminar on Social LCA, 6-7 May, Montréal - SLCA methodologies -

Research demand

- (Intended) use of SLCA results in practice
- Use of SLCA within sustainability assessment
- Consideration of the whole life cycle

Objectives of the case study

- Analysis of social aspects of alternative products for decision support
 - Comparative technology analysis within a R&D project
 - Suitability of the SLCA guidelines
- Use of SLCA within Life Cycle Sustainability Assessment (LCSA)
 - LCSA* = LCA + LCC + SLCA
 - Identification of relevant social indicators for SLCA
- Use of SHDB to adress the life cycle

Case Study - Background: IWRM Indonesia

Joint-research project: Integrated Water Resources Management (IWRM) in Gunung Kidul, Java, Indonesia (2008-2013)

Regional problems:

Insufficient freshwater availability & quality especially in dry season

IWRM-Goal:

- Development of appropriate technologies for water supply, water treatment and sanitation
- Improvement of living conditions and contribution to sustainable development

(Source: IWRM 2011)

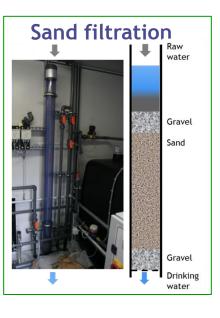
Case Study – Water Treatment

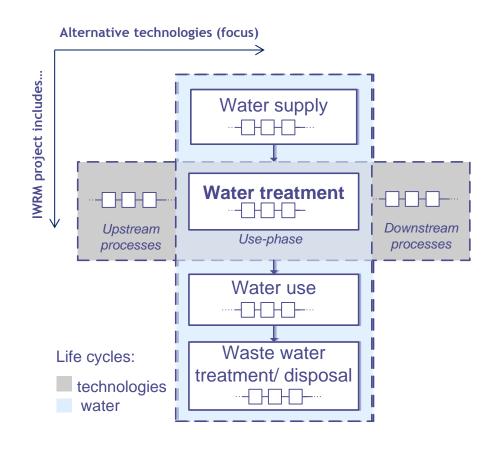
Water treatment: Situation in the investigation area

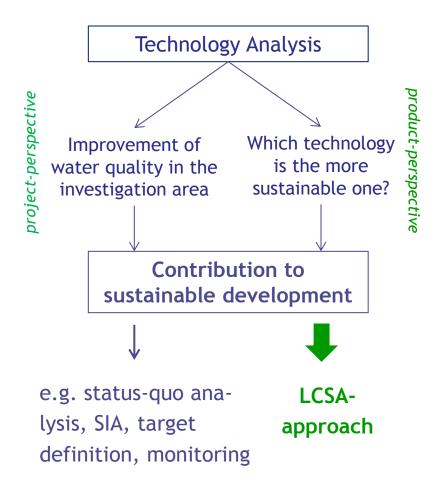
- None of the samples taken from different water sources meets drinking water quality
- Predominant technology: boiling of water

Technologies proposed within the IWRM

- Central pre-treatment
- Decentral treatment (hygienization)
 - → alternative technologies were tested in a field lab (in Germany) and will now be adapted to conditions in Indonesia

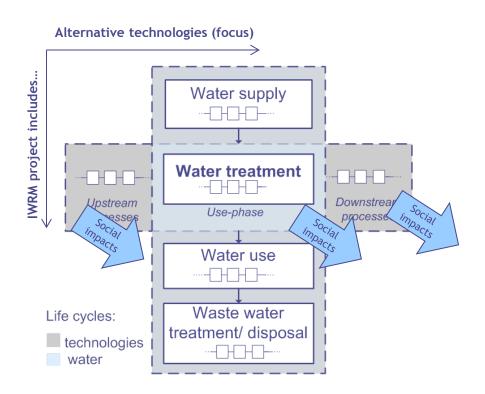

Case Study – Alternative Water Treatment Technologies


- Which social aspects can be analyzed within sustainability assessment?
- Which social aspects are relevant with regard to *comparing* alternative technologies complementary to LCA and LCC?



(Pictures adapted from Matthies 2010)

Sustainability Assessment of Water Treatment Technologies



(adapted from Lehmann et al. 2011)

SLCA within LCSA – Analysis of Alternative Technologies

Provision of drinking water \rightarrow Contribution to sustainable development Functional unit: e.g. treatment (hygienization) of 1 m³ water

Social impacts due to the **function** are the same

→ not decision relevant

SLCA Guidelines – Identification of Social Aspects

Social aspects are mainly related to the organization's behaviour*

→ Hence: differences regarding the social performance as well

BUT

- Organizations in the use phase of the technologies are the same
- Companies along the life cycle are not (yet) known

- 1) Which social aspects are technology related?
- 2) Which social aspects refer to implementation?
- 3) Are sector data usable for a comparative LC-technology analysis?

(* e.g. Jørgensen et al. 2008)

Social Aspects for a Comparative Technology Analysis

Technology related social aspects

Subcategories (Stakeholder)	Inventory Indicators
Local employment (Local community)	e.g. number of people employed locally to operate the technologies
Hours of work (Workers)	e.g. effort to treat a defined amount of water
Health and safety (Workers, Consumers)	e.g. number of accidents/ injuries; potential health risks
Safe and healthy living conditions (Local community)	e.g. presence/ strength of laws on construction safety regulations

Example: Social Aspects in the Use-phase

Subcategory: Health & Safety

Stakeholder	Chlorination	Ultrafiltration	UV-disinfection
Consumer	 "Cl"-odour and taste Potential by-products (THM; possibly too high residual Cl-content 	No effect on odour, tasteNo by-products	No effect on odour, tasteNo by-products
Workers	 Potential risk when dealing with Ca(OCl)₂: Cl₂-formation, oxidiz- ing, corrosive, irritant 	 Potential health risk (depending on the cleaning agent) 	 Potential risk when dealing with the UV-lamp

- ➤ The different water quality (odour/ taste of chlorinated water) may be relevant for consumers' acceptance
- > Different risks for human health (and requirements for operation)

Social Aspects – Implementation

- 7/31 subcategories can be related to implementation
 - Community engagement
 - Cultural heritage
 - Feedback mechanism
 - Corruption
 - Access to immaterial resources
 - Access to material resources
 - Public commitment to sustainability issues

Indicators proposed for the subcategories are not sufficient for the case study

→ Proposal of 11 additional indicators

Social Aspects – Additional Indicators

Additional social Indicators	Characteristics in the IWRM investigation area
Are responsibilities (e.g. responsible institutions) for the technologies clearly defined, e.g. for water supply, -distribution, -treatment, sanitation*	Responsibilities not clearly defined, partly overlapping
Reported trust in institutions**	Considered as low
Fluctuation of personnel (amount)*	High fluctuation of personnel → Possible loss of knowledge → Changing responsibilities
•••	•••

Possible related SLCA subcategories:

(Lehmann et al. 2013)

^{*} Access to immaterial resources

^{**} Corruption

SLCA – Consideration of the Life Cycle

- No site-specific data available
- Various processes along the life cycle of the alternative technologies
 - → Sectors involved differ (qualitatively and quantitatively)

Are information provided on a sector level, e.g. from Social Hotspot Database (SHDB), useful for a comparative technology analysis?

SHDB – Example: Labour Rights & Decent Work

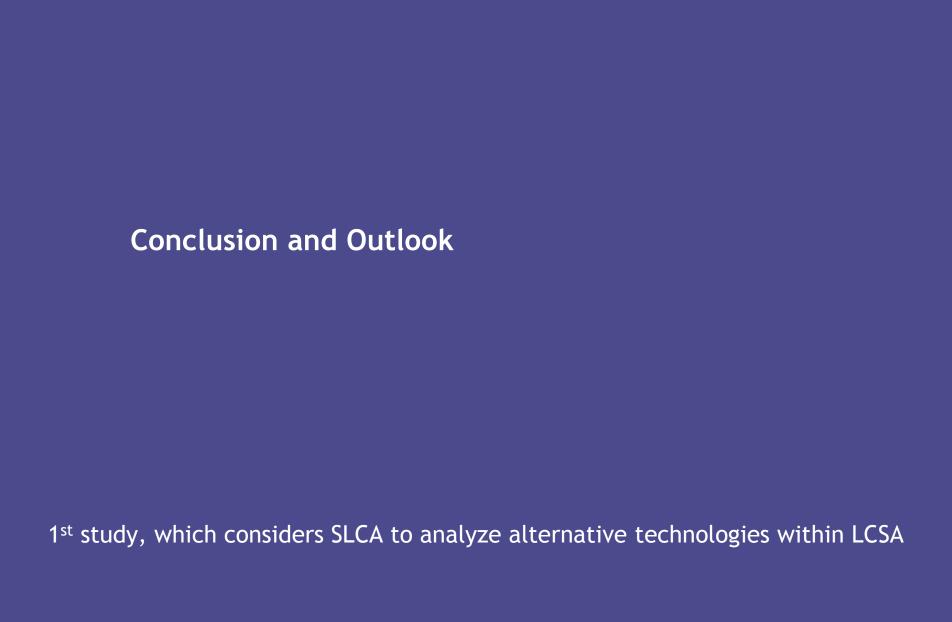
Social theme (~subcategories)	Indicator	Country	Sectors related to water treatment								
		Indonesia	Coal	Oil	Gas	Electricity	Chemicals	Transport	Machinery/ Equipment	Water	
	Risk that country does not ratify ILO conventions by sector	very high									
Labour laws and conventions	Risk that country does not provide adequate labour laws by sector	medium									
	Potential of min.wage not being updated*	low									
Pop. living below poverty line	Potential of population living <2 \$/day*	high									
Child labour	Risk of child labour, total	medium									
Forced labour	Risk of forced labour	high									
Working time	Risk of excessing working time by sector*	very high									
Freedom of Association	Risk that a country lacks or does not enforce freedom of association right*	medium									

* country level data only

- Medium to very high risks for social impacts → high improvement potential
- But, information is not useful for a comparative technolgy analysis

SLCA Guidelines – Identification of Social Aspects

Social impacts occur mainly due to the organization's behaviour*

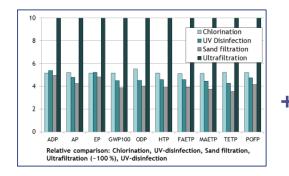

→ hence: differences regarding the social performance as well

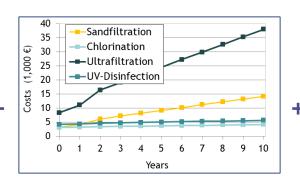
BUT

- Organizations in the use phase of the technologies are the same
- (Specific) companies along the life cycle are not (yet) known

Approach

- 1) Which social aspects are technology related?
- 2) Which social aspects refer to implementation?
- 3) Are sector data usable for a comparative LC-technology analysis?


SLCA as a complement to LCA and LCC: LCSA



LCSA = LCA + LCC + SLCA

Stakeholder	Chlorination Ultrafiltration					UV-disinfection					
Consumer	"Cl"-odour and taste Potential by-products (THM, possibly too high residual Cl-content	No effect on odour, taste No by-products Potential health risk (depending on the cleaning agent)				t	lo ef aste lo by				
Workers	 Potential risk when dealing with Ca(OCl)₂: Cl₂-formation, oxidiz- ing, corrosive, irritant 					c	oten Iealir JV-la	ng wi			
Social theme (~subcategories)	Indicators		Country	Se	ctors i	related	d to w	ater tr	eatme	ent	

(~subcategories)	Indicators	Country	Se	Sectors related to water treatment							
		Indonesia	Coal	Oil	Gas	Electricity	Chemicals	Transport	Machinery/ Equipment		
Labour laws and	Potential of country not passing labour laws	medium				n.d.	n.d.		n.d.		
conventions	Potential of min.wage not being updated	medium									
Pop. living below poverty line	Potential of population living <2 \$/day*										
Child labour	Risk of child labour	medium	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
Forced labour	Risk of forced labour	high									
Excessive working time	Risk of working > 48h/week	very high	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
Freedom of Association	Risk of not having freedom of peaceful assembly and association*	medium									

LCSA Results - Technologies for Water Treatment

Perspective

Technologies

best option worst option

Environmental: Chlorination, UV-disinfection Ultrafiltration

Economic: Chlorination, UV-disinfection Ultrafiltration

Social: No clear recommendation

Use of SLCA for a Comparative Technology Analysis

Methodological challenges/ proposals

- Choice of indicators
 - Most subcategories/ indicators refer to organization's behaviour
 - → Identification of technology related indicators
- Social aspects
 - 7 subcategories refer to implementation, but indicators proposed are not sufficient to address implementation
 - → Proposal of additional social indicators to address implementation
- Consideration of life cycle
 - SHDB delivers useful information, but decisions based on sector/ country level are questionnable
 - → Use as a first step to identify hotspots

Use of SLCA for a Comparative Technology Analysis

Practical challenges within the IWRM project

- Lack of data
 - Data not (yet) available
 - Missing/ contradictory data recording
 - Sector specific data for Indonesia are partly missing in the (current) SHDB
- Use of the results in practice
 - Use-phase is (so far) of highest interest for decision makers

- Further collection of site-specific data/ update with data from the field lab
- Detailed SLCA for the future selected technology, focussing on the identified hotspots

International Seminar on Social LCA, 6-7 May, Montréal - SLCA methodologies -

Annekatrin.Lehmann@tu-berlin.de Technische Universität Berlin, Germany Straße des 17. Juni 135, 10623 Berlin T: +49 30 314-79501 - F: +49 30 21720

References

- Finkbeiner, M., E. M. Schau, A. Lehmann and M. Traverso (2010). "Towards Life Cycle Sustainability Assessment". Sustainability 2: 3309-3322.
- IWRM (2011) BMBF-Verbundprojekt IWRM Indonesien (joint research project IWRM Indonesia). www.iwrm-indonesien and www.hoehlenbewirtschaftung.de. Accessed 28 July 2011.
- Jørgensen A, Le Bocq A, Nazarkina L, Hauschild MZ (2008) Methodologies for Social Life Cycle Assessment. Int J Life Cycle Assess 13 (2) 96-103.
- Klöpffer W (2008) Life Cycle Sustainability Assessment of Products (with Comments by Helias A. Udo de Haes, p. 95). Int J Life Cycle Assess 13(2): 89-95.
- Lehmann A, D Russi, A Bala, M Finkbeiner and P Fullana-i-Palmer (2011c) "Integration of Social Aspects in Decision Support, Based on Life Cycle Thinking". Sustainability 3(4): 562-577.
- Lehmann A, E Zschieschang, M Traverso, L Schebek and M Finkbeiner (2013) "Social Aspects for Sustainability Assessment of Technologies Challenges for S-LCA". Int J Life Cycle Assess. Accepted for publication.
- Matthies, K. (2010). Wasserqualitätsmonitoring und Wasseraufbereitung TP7/8+TP17. IWRM-Status-Workshop (Water quality monitoring and Water treatment. Subproject 7/8+17. IWRM-Status-workshop), 28 April, Karlsruhe, Germany.
- Scholz U, Unger B, Lux T (2004) Sozioökonomische Analyse der potenziellen Wassernutzer Teilprojekt 6 im Verbundprojekt "Erschließung und Bewirtschaftung unterirdischer Karstfließgewässer in Mitteljava, Indonesien. Abschlussbericht des Instituts für Geografie, Gießen (Socioeconomic analysis of potential water users - Subproject 6, joint research project IWRM Indonesia. Final report of the Institute for Geography, Gießen, Germany).
- SHDB (2013) Social Hotspot Database. New Earth/ Social Hotspots Database project. http://socialhotspot.org/.
- UNEP/SETAC (2009) Guidelines for Social Life Cycle Assessment of Products. UNEP/ SETAC Life Cycle Initiative. Druk in de weer, Belgium.
- UNEP/SETAC (2011). Towards a Life Cycle Sustainability Assessment Making Informed Choices on Products. UNEP/SETAC Life Cycle Initiative.

