* Bundesministerium
&9 fiir Bildung
und Ferschung

Karlsruhe Institute of Technology

Evidence Maps
for Synthetic Biology Applications

+ A Discussion Map on Synthetic Biology and
“Knowledge about Life and Its Origin”

These evidence maps represent a work-in-progress as part of the “Engineering Life”
project (www.engineeringlife.de) supported by the Federal Ministry of Education and
Research, Germany (Bundesministerium fur Bildung und Forschung, BMBF). These
versions of the maps were used as a discussion basis during the two-day expert
workshop on “The Present and Future of Synthetic Biology” held in Karlsruhe on 21 —
22 June 2011.

When using these maps, or parts of them, please refer to them as:

Koénig, Harald; Heil, Reinhard; Frank, Daniel; Coenen, Christopher (2011):
Mapping Synthetic Biology Applications (work-in-progress, ‘Engineering Life’
project, funded by BMBF). Karlsruhe: Institute for Technology Assessment and
Systems Analysis (KIT-ITAS); http://www.itas.fzk.de/synbio/home _en.htm




The Engineering Life project

http://www.engineeringlife.de

http://www.itas.fzk.de/eng/projects/2010/coen10 e.htm

The aim of the project is to reflect the theological and ethico-
philosophical relevance of synthetic biology, to analyze its opportunities
and risk potential, and to evaluate whether the current legal situation in
Germany seems appropriate to account for possible risks. Special
attention is paid to specific differences between synthetic biology and
genetic engineering, to the concept of life and its implications, and to
questions concerning governance options. In this way, the project will
help to contextualize synthetic biology research and to enable a well-

informed public and political debate.

Within the Engineering Life project, KIT’s Institute for Technology Assessment
and Systems Analysis (ITAS) is responsible for one of five subprojects. In its
subproject, ITAS will analyse and assess the potential social benefits and risks
of synthetic biology (including environmental, health, safety, security and
socioeconomic aspects) as well as the various expectations and visions
shaping the field (‘vision assessment’) and its knowledge politics. The results
of the subproject will be useful when it comes to governance of synthetic
biology and will also help to deal with the field’s ethical, legal and broader

societal implications.
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GE/SynBio

- GE E.coli and yeast for 1,3-propane-
diol [1, 2, 3] and 1,4-butanediol [4, 5]
(= eg, plastics, solvents, adhesives)

- GE E.coli for lactic acid [6, 7]; GE algae
and plants for direct ‘photosynthetic’
polyhydroxy-alkanoates PHA [8, 9]
(= biodegradable plastics)

- GE E.coli or algae for isobutene [10]
and isoprenoids/farnesene (also
‘photosynthetic’) [11, 12, 13]

(= polymers, rubber, fuels, pharma-
ceuticals)

State of the art

Potential societal
benefits

nvironn ally-friendly
synthesis of chemicals/materials
- Biodegradation/removal of
environmental toxins and
contaminants
- Bioensors for monitoring of

environmental pollution

State of the art

Addressing technical pro-
blems seems possible; eg,
genetic instability [27],
noise [30-32], specificity
[28, 29, 33]

Ll

GE/SynBio

- Coupling (natural) pollutant-
responsive gene-regulation units
to reporter genes [22-25]

- ‘Evolved’ variants of natural
sensor proteins [26, 27], ration-
ally redesigned ones [28] or
synthetic riboswitches [29] for
new pollutants; may also control
cell behaviour (migration) [29]

Environmental
(whole-cell) biosensors

- Can measure bioavailability of
pollutants [34, 36]
- (First-line) screening for general

toxicity or specific pollutants [34-36]

- Cheap and simple large-scale field

measurements (in situ/ex situ) [34-36]

- Integration onto microfluidic,

electronic detection platforms [34, 35]

- Reduces depletion of/dependence
on fossil resources [14, 15]

- Biodegradable materials [15, 16]

- Potential to reduce green house gas
(GHG) emissions [14, 17-19]

Production of chemicals

from renewable sources

o

T
Suitable feedstock may reduce/
avoid land-use/food compet-

ition issue and other environ-
mental effects [17, 20, 21]

Potential risks/
conceptional problems

£

Production by algae or biomass from
perennial grasses grown on degraded
land may prove beneficial [17, 20, 21]

&
=

SynBio approaches for potential
‘biological containment’ (eg, suicide
[70-72] / xenobiotic mechanisms B
[54, 73-75]) and its verification (via
genome “watermarks” [76-78])

GE/SynBio

- GE bacteria for heavy metal [37, 38, 39]
and radionuclide removal [40-42]

- GE bacteria [29, 43, 44, 45] and plants
[46, 47] for organic chemical removal
(eg, pesticides, explosives)

- Approaches to constructed multi-
organismal consortia [48, 49, 50, 51]

Data from a field study Effects may be alleviated by
suggest that these issues systems biology/SynBio
may be not general ones approaches [52-54]; see
[45] also above

Ll JCL L

Removal of environmental
pollution by GE
S microorganisms (or plants):

bioremediation

- Degradation of organic pollutants
without destruction of site material,
flora or fauna [64-66]

- May be used in situ, for pollutants
present in low but relevant
concentrations [52, 57, 64, 67, 68]

- May be less expensive [64]

T

Very few bioremediation
data from field studies of GE
bacteria exist [45, 69]

Pro arguments

- Contra arguments/risks

GE/SynBio

Genetic engineering/SynBio approaches
(references for highly and moderately
artificial work are shown in colour*)

Attenuating arguments

Experimental evidence

Hypothetical

*For artificiality criteria, see Annex, Table |
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- Design of disease-specific
pathways to screen for
therapeutic compounds [8-10]
- Generation of molecular devices
. combining sensor and effector
GE/SynBio functions [8-10]
- Genetic screening circuits for
drug discovery [1, 2, 3, 4]
- RNA devices translating disease-
associated molecular changes to
cell death [5, 6] ——
- Synthetic circuit-based “prosth-
etic devices" to control patho-
genic metabolites [7]

Synthetic circuits/devices for
drug discovery and
therapeutic applications

Supply/lower prices may be met faster,
and economically more beneficial to
developmental countries, by other
methods (eg, artemisinin) [25-27]

GE/SynBio

- Biosynthesis [15] and potential diver-
sification [16, 17] of compound libraries

- GE E.coli for anti-cancer drugs: poly-

ketides [18, 19, 20], taxol [21, 22] —

- GE yeast and E. coli for malaria drug
artemisinin [23, 24]

- Meet demand of natural products
that are in short supply [26, 28, 29]

- Can substitute expensive chemical
synthesis or extraction from
natural sources [29-31]

L1

Stable source for
natural products (not
vulnerable to climate
conditions) [25, 26]

Biosynthesis of pharma-
ceutically active natural
compounds

T
T Example of artemisinin suggests that far-
mers may suffer from subsidy-driven
(agricultural) overproduction, rather
than from SynBio product to come [26]

Ex-vivo applications (cell-
based therapies) may avoid
targeting issue and facilitate
delivery [13, 14]

State of the art

Potential societal

Potential risks/
benefits

conceptional problems

Governance options/standards for
DNA synthesis [61-65], researchers/
projects [40, 66-69] or for control-
ling equipment and reagents [40, 61,
66] may impede misuse

Improved detection, prevention or
treatment of diseases caused by
bioterror agents

diagnosis tools
- Novel therapies
- Biosynthesis of pharmaceuticals
- Better and more rapidly

Improving specficity of viral and ’
bacterial agents

available vaccines

State of the art
Progress in engineering
target specificity or target-
. . . . <" dependent expression of
- Synthetic vaccines/diagnostic therapeutic products [51, 52]
tools may help to counteract !
bioterrorism attacks [9, 39] L
- Governance options, see above
L
GE/SynBio GE/SynBio
- Synthetic, chimeric antigens as

diagnostic tools [32]

- Synthesized viral genomes to
understand etiology/patho-
genicity [33-36]

- Vaccines by synthetically
attenuated virus engineering
(SAVE) [37, 38]

Synthesis of pathogens or
components thereof for
diagnosis and vaccine
development

- GE bacteria against cancer [41, 42]

- GE viruses to fight cancer [43, 44]

- GE bacteriophages against
bacterial infections [45, 46]

- GE mosquitoes for disease control
(eg, malaria, dengue fever) [47-50]

Genetically engineered
organisms/viruses to fight

disease

- Design of complex artificial
antigens for better diagnosis and
vaccines [9]

- Knowledge on origin and
virulence of pathogens, rapid
deployment of vaccines [39]

- Generation of targeted
therapies (eg, specific to
cancer cells) [51, 52]

- May overcome cancer-cell
and bacterial multidrug
resistance [51, 52, 58, 59]

Control of mosquito and
parasite populations
without toxic
insecticides/drug
resistance [57]

1T

Potential development of
resistance to introduced
gene products [60]

Genetic engineering/SynBio approaches
(references for highly and moderately
artificial work are shown in colour*)

Pro arguments

- Contra arguments/risks

GE/SynBio Experimental evidence

Attenuating arguments Hypothetical

*For artificiality criteria, see Annex, Table |
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- Sugar directly available, no need for
direct light conversion technology
(eg, photobioreactors) [1, 9, 10]

- Drop-ins show higher energy density
(compared to ethanol), fungible
with fossil fuels and their infra-
structure, can also replace marine

and aviation fuels [1, 9, 10]

GE/SynBio

- GE E.coli for butanol [1-3]
and branched-chain higher

alkolhols [1] Sugar 2> drop-in fuels

- GE E.coli, yeast and other fungi ..
for biodiesel or alkanes [4, 5, 6,
7, 8]

- GE microalgae for alkanes [6, 7]

L o
T
Food competition may

depend on region/
feedstock [18, 19]

State of the art

Potential societal
benefits

- Less GHGs/COz-neutral
- Less land use/food competition
- Substantial replacement of
fossil fuels by renewable ones
- Climate change mitigation +
energy security

Biosynthesis from molecules
produced by plants

Direct biosynthesis from

State of the art

light and CO

-

AEERRRRREN

- Higher fuel yield per land area,
making nonedible plant parts
available (lignocellulose) [10, 26]
- Usage of non-food feedstocks
(eg, switchgrass), less competition
GE/SynBio for food [10, 26]

- GE yeast for ethanol [20]

- GE bacteria for isobutanol [21]

- E.coli for biodiesel [8]

- GE microalgae, yeast and other Lignocellulose - drop-ins,
fungi for oil production [22] ethanol

- GE lignin-reduced plants [23]

- GE drought-tolerant plants [24, 25]

T

Not necessarily net GHG
emissions by land-use
change [13, 32]

Potential risks/
conceptional problems

- Closed production systems T :

(eg, photobioreactors) [46, 49, 50]
<:| - SynBio approaches for potential ‘biological R
containment’ (eg, suicide [65-67] / S i Proposed
xenobiotic mechanisms [68-71]) and its !  ethical

verification (via “watermarks” [72-74]) '  framework for
/---- | biofuel
‘\----" ! production
! | [81] (and
Can depend on feedstock, . ' references
product, processing and land \/" T therein)
use [75]: R VT
perennial grasses on degraded ,
lands or algae may prove o=y

beneficial [13, 32, 46, 76] -

- Calculations vary, influenced
by feedstock, products and
land use [49, 77-79]: B

- Lignocellulosic and algal bio-

fuels may replace substantial

proportion [49, 80]

[42]

- Enhanced light conversion

=4 - Direct fuel synth. strategies,
secreted products [41, 43]

- Wastewater, flue gas COz or
energy from spent algal
biomass [44-48]

- Feasability studies [49, 50]

GE/SynBio

- GE microalgae for ethanol [33, 34],
iso-butyraldehyde/-butanol [35],
butanol [36], methyl-butanol [37]
or iso-prenoides [38, 39] —

- GE microalgae for secretion of

alkanes [41]

fatty acids (-> biodiesel) [40] or by microalgae

............._@......‘.a, agh

Light + CO2 > drop-ins,
ethanol

High photosynthetic yields,
(high energy yield per area);
less need for (arable) land;
use of brack/sea water;
production of lipids and
hydrocarbons [44, 51, 53]

- Improved light conversion [58]
- Improved efficiency of

“] hydrogen production [54, 56,
57,59, 60]
L
GE/SynBio
- GE green algae with increased H: Light + H20 + CO; > hydrogen

production [54-58]
- GE cyanobacteria with enhanced
H2 production [59, 60]

by microalgae

- Hydrogen is a non-carbon based
fuel (may reduce CO>
emissions) [63]

- Microalgal based production
may sequester COz [51, 61]

Pro arguments

- Contra arguments/risks

GE/SynBio

Genetic engineering/SynBio approaches

(references for highly and moderately

Experimental evidence

artificial work are shown in colour*)

Attenuating arguments

Hypothetical

*For artificiality criteria, see Annex, Table |
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Annex



Artificiality | Functions/entities | .. combined with processes to generate them
Generation/alteration of organisms or viruses via synthesis of whole genomes or
substantial genome portions
Generation of ‘minimal’ life in vitro using natural or non-natural molecules/molecular
complexes, or in vivo by eliminating multiple dispensable genes

Transfer/generation of complex pathways or genetic circuits
Functions occuring in
High nature Generation involves non-natural components (‘parts’)
(eg, non-natural nucleotides or amino acids, synthetic enzymes)
Generation of comlex or less complex pathways or genetic
circuits (based on combination of natural components);
Functions not transfer/downregulation of several genes
present in nature
Generation involves non-natural components (‘parts’)
(eg, designed/‘evolved’ proteins or riboswitches with novel
specificities)
Functions occuring in | Transfer/generation of less complex pathways or genetic
nature circuits (based on combination of natural components);
transfer/downregulation of several genes

Moderate
Functions not Generation via simple genetic circuits (based on combination of
present in nature natural components)

Functions occuring in
nature Transfer of 1-2 genes onl
Low 5 v

Functions not
present in nature

[including simple reporter genes or gene/protein fusions]|

Table I An attempt to characterize artificiality of genetic engineering/
synthetic biology work.
Assigned degrees of artificiality (high, moderate or low) are based on
characteristics of both the generated functions/entities and the processes used to
obtain them. The basic three-level scheme of artificiality and properties to
characterize artificiality of processes were adapted and refined from ideas of our
“Engineering life“ BMBF-project partners Hanna Wischhusen, Birgit Wiltschi and

Wilfried Weber (BIOSS, University of Freiburg).




Drafted May 30, 2011
by Harald Konig, Daniel Frank, Reinhard Heil & Christopher Coenen (ITAS, KIT)

We thank Arnold Sauter, Michael Liss and Sven Panke for comments and suggestions on the SynBio application
evidence maps; Birgit Wiltschi and Wilfried Weber for critically reading them; and Hanna Wischhusen for critical
reading and contributing to characterization of artificiality of cited GE/SynBio work. All remaining errors are ours.
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