Entwicklungen im Strahlenschutz

Dr Annie **Sugier Chair, ICRP Committee 4** Dr Jack Valentin Scientific Secretary, ICRP

• International Commission on Radiological Protection What ICRP does and why

- Waste disposal and potential exposure Concept developments since Publication 46 (1986)
- The ethical basis of ICRP Recommendations Justification (political) – optimisation – limits & constraints
- The 2007 Recommendations = Publication 103 Focus on the exposure situation, not on the process Protection of the environment

ICRP In The Cosmic Scheme

Waste disposal and potential exposure

• Publication 46 (1986): Radiation Protection Principles for the Disposal of Solid Radioactive Waste

Defines principles; notes probabilistic nature – describes potential exposures [not the term!]; discusses truncated collective doses

• Publication 77 (1998): Radiation Protection Policy for the Disposal of Radioactive Waste Clarifies policy; collective dose – don't ignore, but disaggregate &

discuss uncertainty; constraint: 0.3 mSv

Collective Dose: Logical, But Is It Right?

Equates many small doses to few large doses...

Are 500 road traffic casualties just as bad as 500 plane crash victims?

• Publication 81 (2000): Rad. Prot. Recommendations as Applied to the Disposal of Long-lived Solid Rad. Waste Dilute & disperse / Concentrate & retain; optimisation by qualitative judgement; consider natural processes & human intrusion

Methodological Options

Potential Exposures

- Publication 64 (1993): Protection from Potential Exposure: A Conceptual Framework
- Workplace accidents

Number of people affected: small Detriment = health risk to those directly exposed

• Large disasters

Number of people affected: large Detriment: also contaminated land, food restrictions, etc

• Exposures in the far future, e.g. from waste repositories Considerable uncertainties Dose calculations: to compare protection options; not to project detriment

Assessment of Potential Exposures

• Publication 76 (1997): Protection from Potential Exposures: Application to Selected Radiation Sources

Risk constraints to guide optimisation of protection

 against workplace accidents
 Prob (accident) * Prob (death | accident dose)
 This Expectation Value not appropriate for long-lived waste – cf.
 definition of Risk, Chapter 3 of BMU draft

• Recommended generic risk constraints: Potential exposure of workers: 2 10⁻⁴ per year Potential exposure of the public: 1 10⁻⁵ per year

Publication 81 Conclusion

- If the appropriate constraint is satisfied for natural processes;
- If reasonable measures have been taken to reduce the probability of inadvertent human intrusion;
- If sound engineering and managerial principles have been followed;
- Then radiological protection requirements can be considered satisfied.

The ethical basis of ICRP Recommendations

The Principles of Protection

Source-related, in all exposure situations:

• Justification

More benefit than detriment

Optimisation of protection

Dose and risk constraints to (a) increase equity, (b) consider multiple sources

Individual-related, in *planned* exposure *situations*

• Application of dose limits Except medical exposure of patients

ICRP Value Judgements - Constraints & Equity

Utilitarian ethics	Deontological ethics
Judge actions by the consequences	Some duties are imperative
Justification	Limitation
Do more good than harm	No individual unduly harmed
Optimisation Maximise good > harm	Dose constraints Increased equity = emphasise the individual

Limits, Levels – Constraints & Multiple Sources

The 2007 ICRP Recommendations

ICRP Consulted Widely on the 2007 Recommendations

Nominal Probability Coefficients (% Sv⁻¹)

Exposed popula- tion	Cancer		Heritable effects		Total detriment	
	Publ 60	2007	Publ 60	2007	Publ 60	2007
Whole	6.0	5.5	1.3	0.2	7.3	5.7
Adult	4.8	4.1	0.8	0.1	5.6	4.2

Nominal Probability Coefficients (% Sv⁻¹)

For practical protection purposes, the overall risk coefficient of ~5% is still appropriate

BMU draft para. 8.3.2 uses 5.7% to get 1.8 mSv; 5% would yield 2 mSv

1 = 2

Stakeholders Are Engaged in Optimisation

In 1990, a Process-Based Approach

 Practice
 Intervention

 increases exposure or risk
 reduces exposure or risk

Optimise protection = reduce collective dose;

restrictions on individual dose constrain the optimisation

In 1990, a Process-Based Approach

2007, Exposure Situation: Planned / Emergency / Existing

reject *planned* options –

even if collective dose is lower

Constraint/ Reference level

acceptable planning options desirable final result

Inappropriate to plan to allow higher exposures

Prospective individual dose

Why Protect Other Species?

- *NOT* driven by concerns of existing radiation hazards
- Fills a conceptual gap
 - Science to show that other species are adequately protected if individual humans are protected (cf. Chapter 5.2, BMU draft)
 - and methods to improve protection if required
- Further guidance will be provided

To Summarise, ICRP is...

- Retaining the fundamental principles of protection
- Clarifying how they apply to sources and the individual
- Changing focus from process (practice/intervention) to exposure situation (planned/emergency/ existing)
- Extending the concept of source-related constraints to all situations
- Updating weighting factors and detriment
- Maintaining the current dose limits

The 2007 ICRP Recommendations

