**KIT - ITAS** 

## Model Analysis

# Analysis of available models to estimate the potential of biomass for energy use

review and model-description for agriculture by Florian Klein; model-description for forestry by Alexandra Pehle; translation german-english by Alexandra Pehle; edited by Nora Weinberger and Martin Knapp

Interim Report for Task 1.2. of the project ,Biomasse OUI - Innovations for sustainable utilization of biomass in the Upper Rhine Region'

16.07.2013

Description and analysis of all researched models for biomass evaluation in the Upper-Rhine region

### Content

| Image Index6                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Analysis scheme                                                                                                                                |
| 1.1 Approach in the analysis of investigated models:8                                                                                            |
| 1.2 Structure in the written summary:8                                                                                                           |
| 1.3 Bioenergy potentials9                                                                                                                        |
| Definition of potentials:9                                                                                                                       |
| 2 Analysis of models that were part of our research10                                                                                            |
| 2.1 The biomass-yield model10                                                                                                                    |
| 2.2 A GIS-based approach to evaluate biomass potential from energy crops at regional scale                                                       |
| 2.3 Land use implications of increased biomass production identified by GIS-based suitability and yield mapping for <i>Miscanthus</i> in England |
| 2.4 YIELDSTAT – a model for regional yield estimation (Workshop: "Modeling of soil-<br>crop system - Challenges of the 21st Century)             |
| 2.5 Assessment of Biomass Potential for Power Production: A GIS Based Method 16                                                                  |
| 2.6 RAUMIS                                                                                                                                       |
| 2.7 Modeling biomass on a forest sample area                                                                                                     |
| 2.8 Modelling and validation of agricultural and forest biomass potentials for Germany and Austria                                               |
| 2.9 Regional potential for the provision of fuel wood - Results of a study in northeast<br>Brandenburg                                           |
| 2.10 The single tree-based stand simulator SILVA: construction, application and evaluation                                                       |
| 2.11 Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information                                     |

| 2.29 Bioenergy crop models: descriptions, data requirements, and future challenges37                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| 2.30 Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest<br>Inventory and Remotely Sensed Imagery in a GIS       |
| 2.31 Collaborative research project integrating optimization approaches for the supply of sustainable fuel wood                              |
| 2.32 Status of biomass resource, version 3                                                                                                   |
| 2.33 Collection of energy wood potential and its availability in forest and open land with new remote sensing methods                        |
| 2.34 3D segmentation of non-forest trees for biomass assessment using LiDAR data 39                                                          |
| 2.35 Estimating forest LAI profiles and structural parameters using a ground-based laser called Echidna                                      |
| 2.36 Quantification of live aboveground forest biomass dynamics with Landsat time-                                                           |
| series and field inventory data: A comparison of empirical modeling approaches 41                                                            |
| 2.37 Potential of woody biomass determination with the usa of UAV aerial imagesDetermining the potential of biomass of wood using UAV-images |
| 2.38 Aggregating pixel-level basal area predictions derived from LiDAR data to industrial forest stands in North-Central Idaho               |
| 2.39 Forest biomass mapping from lidar and radar synergies                                                                                   |
| 2.40 L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest.43                                                       |
| 2.41 Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers                                     |
| 2.42 Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images                                      |
| 2.43 Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images   |
| 2.44 Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR                                          |
| 2.45 Three-Dimensional Modeling of an Urban Park and Trees by Combined Airborne<br>and Portable On-Ground Scanning LIDAR Remote Sensing      |

| 2   | 2.46 Land Availability for Biofuel Production                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | 2.47 Biomass resources and costs: Assessment in different EU countries                                                                      |
|     | 2.48 SOCRATES – an object-oriented model system for regional assessment of the mpact of land use and climate change on soil and plant sizes |
|     | 2.49 Potential analysis for detection of woody biomass in Lower Saxony by remote sensing methods                                            |
|     | 2.50 Development and testing of a method for the estimation of regional dendromass                                                          |
|     | balances on the example of North Rhine-Westphalia                                                                                           |
|     | <ul><li>2.51 Competition for biomass</li></ul>                                                                                              |
|     | 2.52 Bioenergie im globalen Energiesystem, Möglichkeiten und Grenzen                                                                        |
|     | 2.54 Master thesis Daniel Ketzer – Model-based assessment of biomass with scenarios                                                         |
|     | for the Odenwaldkreis                                                                                                                       |
| Soι | 1rces                                                                                                                                       |

### Image Index

| Figure 1: Model scheme                                                 | 12 |
|------------------------------------------------------------------------|----|
| Figure 2: Scheme of model nr. 2.3                                      | 13 |
| Figure 3: Scheme of Yieldstat, [5]                                     | 15 |
| Figure 4: Schema "DSS"                                                 | 17 |
| Figure 5: Modeling the distribution of biomass on forest sites, [10]   | 19 |
| Figure 6: Model scheme of BETHY, DLR, [11]                             | 20 |
| Figure 7: Flowchart for SILVA-Model                                    | 22 |
| Figure 8: Target function, [16]                                        | 24 |
| Figure 9: Method for evaluating resources for biofuel-potentials, [16] | 25 |
| Figure 10: Model structure SOCRATES                                    | 49 |
| Figure 11: Set-up of the model LaNuOpt, [52]                           | 52 |
| Figure 12: Link between the location factors, [52]                     | 53 |
| Figure 13: Scenarios of bioenergy, [53]                                | 54 |
| Figure 13: Scenarios of bioenergy, [53]                                | 54 |
|                                                                        |    |

### 1 Analysis scheme

#### **1.1 Approach in the analysis of investigated models:**

- 1) Input-parameter
- 2) Output-parameter
- 3) <u>Basic conditions/framework:</u> gives criteria for the transferability (= regionalization)
  - a. main conditions
  - b. constraints
- 4) <u>Algorithm:</u> structure or mathematic algorithms by which the model is described

#### **1.2 Structure in the written summary:**

<u>1 Model name</u>:

- 2 Types of biomass:
- 3 Region:

<u>4 Input</u>:

<u>5 Output</u>:

6 Conditions:

7 Algorithm:

- 8 Assessment of the model:
  - a. Transferability (regionalization)
  - b. Reproducibility (algorithm completely understandable? Applicability, availability of data)

#### Table 1: Table format analysis scheme

| 1. Model name              | NAME, [source]                             |
|----------------------------|--------------------------------------------|
| 2. Type of Biomass         | Туре                                       |
| 3. Region/resolution       | Location or scope/unit area                |
| 4. Input                   | Data                                       |
| 5. Output                  | Result, data, mapping, objective functions |
| 6. Conditions              | Various conditions                         |
| 7. Algorithm               | Functions, tools, etc.                     |
| 8. Assessment of the model |                                            |
| a) Transferability         | Yes/no                                     |
| b) Reproducibility         | Yes/no                                     |

#### **1.3 Bioenergy potentials**

The determination of bioenergy potential is divided into theoretical, technical, economic and sustainable potentials.

#### Definition of potentials<sup>1</sup>:

• THEORETICAL POTENTIAL:

Physical upper limit of energy which is from a specific source.

• TECHNICAL POTENTIAL:

Modified on the annual efficiency of the respective conversion path (technologyspecific) from the theoretical potential.

#### ECONOMIC POTENTIAL:

• Economically exploitable part of the technical potential, taking into account the economic conditions.

#### • SUSTAINABLE POTENTIAL:

Takes all dimensions of sustainability into account, only blurred demarcation possible because definitions and limitations of sustainability can be interpreted differently and will be interpreted differently.

#### 2 Analysis of models that were part of our research

Research for models that assess the availability of agricultural and forest biomass was done. The focus was on models that demonstrate the status quo of biomass potentials and that even allow the evaluation of their potential use.

| 1. Model name              | Bym, biomass-yield-model, [2]                           |
|----------------------------|---------------------------------------------------------|
| 2. Type of Biomass         | Assumably agricultural biomass, no specific definition  |
| 3. Region/resolution       | Republic of Germany on a county-level                   |
| 4. Input                   | CORINE 2000, yield data from different data bases,      |
|                            | other parameters                                        |
| 5. Output                  | Spatial modeling with ArcGIS and 3 scenarios            |
| 6. Conditions              | see algorithm                                           |
| 7. Algorithm               | Three dimensional yield function for each type of crop, |
|                            | under consideration of different parameters. No         |
|                            | sufficient description of the algorithm (see figure)    |
| 8. Assessment of the model |                                                         |
| a) Transferability         | Theoretically it can be applied on a regional level,    |
|                            | however, the description is insufficient to explicitly  |
|                            | evaluate the transferability                            |
| b) Reproducibility         | Not reproducible with the information that is available |

#### 2.1 The biomass-yield model

### 2.2 A GIS-based approach to evaluate biomass potential from energy

| 1. Model name              | -, [3]                                                            |
|----------------------------|-------------------------------------------------------------------|
| 2. Type of Biomass         | Energy plants                                                     |
| 3. Region/resolution       | Italien, Emilia-Romagna/?                                         |
| 4. Input                   | Agricultural data on a regional level                             |
| 5. Output                  | Maximization of the energy production of energy crop (wooden      |
|                            | and herb-rich biomass)                                            |
| 6. Conditions              | Both GIS-Data and yield data                                      |
| 7. Algorithm               | 1. Produce a data base that includes information concerning       |
|                            | needed environmental parameters for each type of crop (soil-      |
|                            | type and -fertility, climate, geomorphology, land-suitability,    |
|                            | availability of water)                                            |
|                            | 2. Determining the amount of soil/area that is potentially        |
|                            | available and actually used. Political and social restrictions    |
|                            | have to be taken into account.                                    |
|                            | 4. Determining land use. This step bases on the assumption,       |
|                            | that there is a best solution for a certain type of crop. If not, |
|                            | then the algorithm has to be optimized.                           |
|                            | See figure 1.                                                     |
| 8. Assessment of the model | Complex algorithm with quite a few coefficients. Basically the    |
|                            | model consists of summations.                                     |
| a) Transferability         | Potentially yes.                                                  |
| b) Reproducibility         | In parts it is reproducible since formulas are provided           |

### crops at regional scale

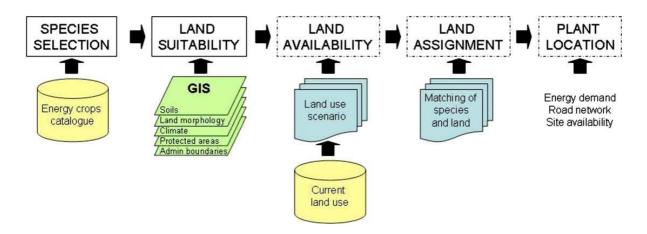



Figure 1: Model scheme

### 2.3 Land use implications of increased biomass production identified by GIS-based suitability and yield mapping for *Miscanthus* in England

| 1. Model name        | -, [4]                                                                                                                                                                                                                                                                                                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Type of Biomass   | Renewable primary products, permanent crop, Miscanthus                                                                                                                                                                                                                                                                            |
| 3. Region/resolution | England/1 ha                                                                                                                                                                                                                                                                                                                      |
| 4. Input             | GIS-data and statistical, agricultural data regarding yield                                                                                                                                                                                                                                                                       |
|                      | and crop growing areas                                                                                                                                                                                                                                                                                                            |
| 5. Output            | The output demonstrates the consequences of potential                                                                                                                                                                                                                                                                             |
|                      | Miscanthus yields so that conclusions regarding competition                                                                                                                                                                                                                                                                       |
|                      | of land usage or other problems with respect to                                                                                                                                                                                                                                                                                   |
|                      | conservation areas can be drawn.                                                                                                                                                                                                                                                                                                  |
| 6. Conditions        | Consideration of environmental- and social/economical                                                                                                                                                                                                                                                                             |
|                      |                                                                                                                                                                                                                                                                                                                                   |
|                      | factors                                                                                                                                                                                                                                                                                                                           |
| 7. Algorithm         | factors <ol> <li>ArcGIS-maps of <i>Miscanthus</i> yields and resource</li> </ol>                                                                                                                                                                                                                                                  |
| 7. Algorithm         |                                                                                                                                                                                                                                                                                                                                   |
| 7. Algorithm         | 1. ArcGIS-maps of <i>Miscanthus</i> yields and resource                                                                                                                                                                                                                                                                           |
| 7. Algorithm         | 1. ArcGIS-maps of <i>Miscanthus</i> yields and resource distribution in England (see "Yield-Mapping")                                                                                                                                                                                                                             |
| 7. Algorithm         | <ol> <li>ArcGIS-maps of <i>Miscanthus</i> yields and resource<br/>distribution in England (see "Yield-Mapping")</li> <li>Identifying places that are not suitable for bioenergy</li> </ol>                                                                                                                                        |
| 7. Algorithm         | <ol> <li>ArcGIS-maps of <i>Miscanthus</i> yields and resource<br/>distribution in England (see "Yield-Mapping")</li> <li>Identifying places that are not suitable for bioenergy<br/>production, according to 9 or 11 factors (see "suitability-</li> </ol>                                                                        |
| 7. Algorithm         | <ol> <li>ArcGIS-maps of <i>Miscanthus</i> yields and resource<br/>distribution in England (see "Yield-Mapping")</li> <li>Identifying places that are not suitable for bioenergy<br/>production, according to 9 or 11 factors (see "suitability-<br/>mapping")</li> </ol>                                                          |
| 7. Algorithm         | <ol> <li>ArcGIS-maps of <i>Miscanthus</i> yields and resource<br/>distribution in England (see "Yield-Mapping")</li> <li>Identifying places that are not suitable for bioenergy<br/>production, according to 9 or 11 factors (see "suitability-<br/>mapping")</li> <li>Examining the current land use to evaluate if a</li> </ol> |

#### a) Transferability

#### b) Reproducibility

Insufficient description of the algorithm

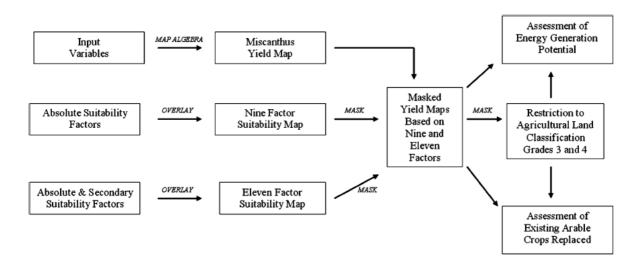



Figure 2: Scheme of model nr. 2.3

### 2.4 YIELDSTAT – a model for regional yield estimation (Workshop: "Modeling of soil-crop system - Challenges of the 21st Century)

| 1. Model name        | YIELDSTAT (ZALF, LfLUG, TU-Dresden), [5]                                   |
|----------------------|----------------------------------------------------------------------------|
| 2. Type of Biomass   | Agricultural biomass                                                       |
| 3. Region/resolution | Thuringia, Saxony/?                                                        |
| 4. Input             | Yield data                                                                 |
| 5. Output            | Hybrid scheme based on statistical data that assesses the                  |
|                      | regional biomass yield for Thuringia. Transferability has been             |
|                      | tested for the region of Saxony. The model consists of four                |
|                      | different levels, a yield assessment until 2050 is possible and            |
|                      | includes several scenarios. These scenarios consider different             |
|                      | $CO_2$ concentrations on the basis of climate change.                      |
| 6. Conditions        | Yield assessment for different regions region                              |
| 7. Algorithm         | 1. Level: yield matrix according to [6] site-dependent                     |
|                      | algorithms.                                                                |
|                      | 2. Level: site-specific yield functions                                    |
|                      | 3. Level: trend overlay $\rightarrow$ statistical trend analyses and trend |

|                            | extrapolations                                                       |
|----------------------------|----------------------------------------------------------------------|
|                            | 4. level: influence of different $CO_2$ concentrations, based on the |
|                            | FACE-experiments of vTI-Braunschweig (source: Weigel et al.,         |
|                            | 2005) (see figure 3)                                                 |
|                            | In contrast to the paper published in 2009, the model consists       |
|                            | now of 5 levels (see                                                 |
|                            | http://www.zalf.de/de/forschung/institute/lsa/forschung/oek          |
|                            | omod/yieldstat/Seiten/default.aspx)                                  |
| 8. Assessment of the model |                                                                      |
| a) Transferability         | Potentially yes                                                      |
| b) Reproducibility         | Under consideration of the final report of [7], the model might      |
|                            | be reproducible.                                                     |

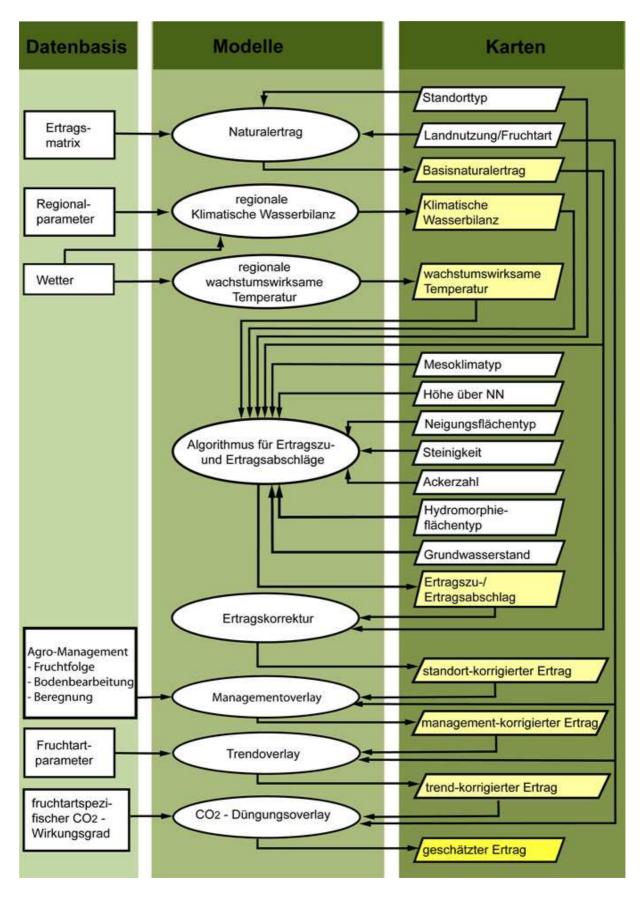



Figure 3: Scheme of Yieldstat, [5]

### 2.5 Assessment of Biomass Potential for Power Production: A GIS

#### **Based Method**

| 1. Model name              | -, [8]                                                          |
|----------------------------|-----------------------------------------------------------------|
| 2. Type of Biomass         | Agricultural residual crops                                     |
| 3. Region/resolution       | Greek, Creta/?                                                  |
| 4. Input                   | GIS Data and statistical, agricultural data                     |
| 5. Output                  | Modeling the energetic use of agricultural residuals by means   |
|                            | of GIS-maps (heating values are provided). The model            |
|                            | considers conversion pathways, as well as the distribution of   |
|                            | biomass in relation to power stations (source-sink).            |
|                            | Comparison of power generation costs when renewable             |
|                            | energy sources instead of fossil energy sources are used.       |
|                            | Use of a "DSS - Decision Support System"                        |
| 6. Conditions              | -                                                               |
| 7. Algorithm               | 1. Theoretical potential – The whole growing area multiplied    |
|                            | by the annual yield per hectare.                                |
|                            | 2. Available potential – The energy content of the biomass is   |
|                            | evaluated by the lower heating value (upper heating value is    |
|                            | the vaporization enthalpy of water).                            |
|                            | 3. Technical potential – depends on the choice of technology    |
|                            | (which results in different degrees of efficiency, efficiency   |
|                            | factors and amounts of energy).                                 |
|                            | 4. Economical potential – costs of capital, investments,        |
|                            | maintenance, transportation, purchase and supply.               |
|                            | Additionally the model includes a decision support system that  |
|                            | helps to choose the best usage of the different potentials (see |
|                            | figure 4)                                                       |
| 8. Assessment of the model | -                                                               |
| a) Transferability         | Potentially yes                                                 |
| b) Reproducibility         | Functions/formulas are represented in an understandable         |
|                            | manner.                                                         |

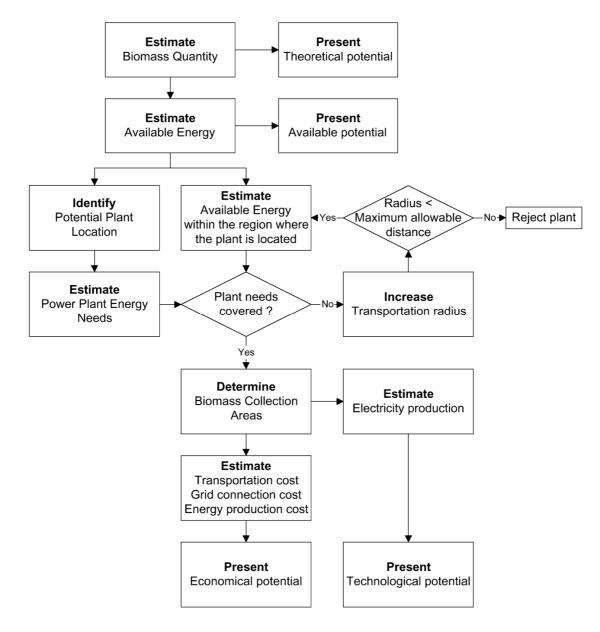



Figure 4: Schema "DSS"

#### 2.6 RAUMIS

| 1. Model name              | RAUMIS (Regionalisiertes Agrar-und                              |
|----------------------------|-----------------------------------------------------------------|
|                            | Umweltinformationssystem für die Bundesrepublik                 |
|                            | Deutschland), [9]                                               |
|                            |                                                                 |
| 2. Type of Biomass         | Theoretically for every type of biomass for which there is data |
|                            | in the agricultural statistics.                                 |
| 3. Region/resolution       | Germany/326 model regions in Germany, according to              |
|                            | counties                                                        |
| 4. Input                   | Regional-and sector data, agricultural statistics based on a    |
|                            | county level and based on the agricultural resource accounting  |
| 5. Output                  | Availability of sectorial products, information regarding       |
|                            | material, energy, emissions and land use on different           |
|                            | aggregational leves.                                            |
| 6. Conditions              | -                                                               |
| 7. Algorithm               | -                                                               |
| 8. Assessment of the model | -                                                               |
| a) Transferability         | -                                                               |
| b) Reproducibility         | -                                                               |

### 2.7 Modeling biomass on a forest sample area

| 1. Model name        | -, [10]                                                     |
|----------------------|-------------------------------------------------------------|
| 2. Type of Biomass   | Wood                                                        |
| 3. Region/resolution | Germany, Freising                                           |
| 4. Input             | Measurements of forest growth increment                     |
| 5. Output            | Light- and population model for forests. Distribution of    |
|                      | biomass in dependence on the light field of the population, |
|                      | based on forest growth measurements.                        |
| 6. Conditions        | -                                                           |

| 7. Algorithm               | See figure 5                                                     |
|----------------------------|------------------------------------------------------------------|
| 8. Assessment of the model | -                                                                |
| a) Transferability         | Yes.                                                             |
| b) Reproducibility         | It is hard to be reproduced, the description of the algorithm is |
|                            | insufficient. Not suitable for analyzing regional biomass        |
|                            | potentials.                                                      |

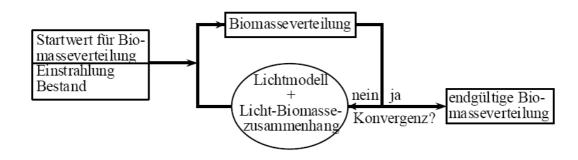



Figure 5: Modeling the distribution of biomass on forest sites, [10]

## 2.8 Modelling and validation of agricultural and forest biomass potentials for Germany and Austria

| 1. Model name        | Biosphere Energy Transfer Hydrology = BETHY (German                     |
|----------------------|-------------------------------------------------------------------------|
|                      | Aerospace Institution, DLR), [11]                                       |
| 2. Type of Biomass   | Agricultural (straw) and forest biomass                                 |
| 3. Region/resolution | Germany, Austria/1km <sup>2</sup>                                       |
| 4. Input             | Meteorological data, as well as data from remote sensing (for           |
|                      | example LIDAR, GLC 2000, Radar etc. (see figure 6))                     |
| 5. Output            | NDVI assessed from different sensor-data, net primary                   |
|                      | production of biomass (land coverage and total amount of                |
|                      | biomass, including underground biomass)                                 |
| 6. Conditions        | -                                                                       |
| 7. Algorithm         | Complex algorithm. The model is also called "SVAT-model                 |
|                      | (soil-vegetation-atmosphere-transfer). Summarizing the                  |
|                      | model, carbon fixation through assimilation of $\text{CO}_2$ in energy- |

|                            | rich, complex molecules of plants is assessed.                  |
|----------------------------|-----------------------------------------------------------------|
| 8. Assessment of the model | Extensive dissertation regarding the application and validation |
|                            | of the BETHY-Model of the German Aerospace Institution. The     |
|                            | model has some weaknesses, as for example the rather low        |
|                            | resolution of 1 km.                                             |
| a) Transferability         | Not clear.                                                      |
| b) Reproducibility         | Not clear. Do we have accordant data?                           |

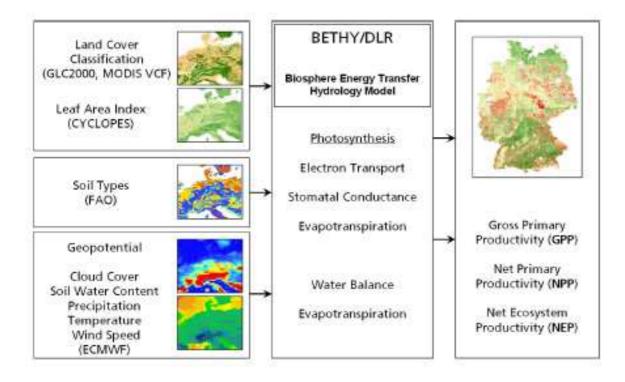



Figure 6: Model scheme of BETHY, DLR, [11]

## 2.9 Regional potential for the provision of fuel wood - Results of a study in northeast Brandenburg

| 1. Model name              | -, [12]                                                             |
|----------------------------|---------------------------------------------------------------------|
| 2. Type of Biomass         | Energy wood, short rotation                                         |
| 3. Region/resolution       | North-East Brandenburg                                              |
| 4. Input                   | Infrastructural data regarding forestry                             |
| 5. Output                  | Suitable sites for biomass facilities                               |
| 6. Conditions              | •                                                                   |
| 7. Algorithm               | The aim of the algorithm is to analyze resources and                |
|                            | infrastructure to find sites for biomass facilities. Sites are used |
|                            | to store, to transfer and to distribute energy wood.                |
| 8. Assessment of the model | •                                                                   |
| a) Transferability         | The outcome of the model does not match the aims of our             |
|                            | project.                                                            |
| b) Reproducibility         | -                                                                   |

## 2.10 The single tree-based stand simulator SILVA: construction, application and evaluation

| 1. Model name        | SILVA, TU Munic (Freising), [13]                               |
|----------------------|----------------------------------------------------------------|
| 2. Type of Biomass   | Forest wood                                                    |
| 3. Region/resolution | Germany (and ?)/single trees                                   |
| 4. Input             | Tree species, data regarding tree sizes and populations        |
| 5. Output            | Yield development of the whole forest, based on the simulation |
|                      | of the growth increment of single trees                        |
| 6. Conditions        | -                                                              |
| 7. Algorithm         | Parameters of single tree species and of the terrain, climate- |
|                      | and growth-relevant data. Growth increment of single trees is  |
|                      | simulated in dependence on time. The aim is to be able to      |

|                            | carry out operational and strategic procedure in forest          |
|----------------------------|------------------------------------------------------------------|
|                            | planning based on simulations.                                   |
| 8. Assessment of the model | The model is a tool for predicting the natural growth in the     |
|                            | forest, based on single trees.                                   |
| a) Transferability         | Complex model that does not explicitly match the aims of our     |
|                            | project.                                                         |
| b) Reproducibility         | It is difficult to reproduce, the algorithm is very complex (see |
|                            | also the homepage of TUM/WZW)                                    |

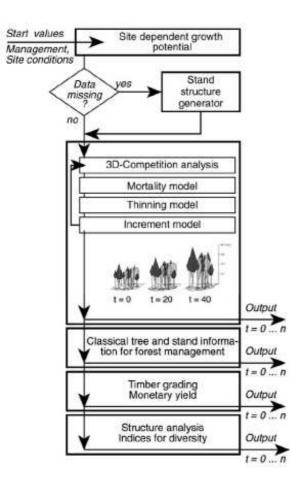



Figure 7: Flowchart for SILVA-Model

## 2.11 Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information

| 1. Model name | -, [14] |  |
|---------------|---------|--|

| 2. Type of Biomass         | Grassland                                                         |
|----------------------------|-------------------------------------------------------------------|
| 3. Region/resolution       | Italien Alps                                                      |
| 4. Input                   | Utilization of different tools, satellite images, empirical field |
|                            | studies, comparison of different vegetation indices: SR, NDVI,    |
|                            | SAVI, MSAVI, OSAVI                                                |
| 5. Output                  | Assessment of pastures of Italian Alps                            |
| 6. Conditions              | -                                                                 |
| 7. Algorithm               | Not comprehensible                                                |
| 8. Assessment of the model | -                                                                 |
| a) Transferability         | Difficult and not useful                                          |
| b) Reproducibility         | Difficult to reproduce and not useful for the aims of our         |
|                            | project.                                                          |

## 2.12 Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios

| 1. Model name              | -, [15]                                                        |
|----------------------------|----------------------------------------------------------------|
| 2. Type of Biomass         | Crop- and pasture land                                         |
| 3. Region/resolution       | Europe/coarse solution, absolute numbers (of the total area of |
|                            | cultivated crop- and pasture land)                             |
| 4. Input                   | Yields, current land use in the EU                             |
| 5. Output                  | Land use competition, potential change in land use, potentials |
|                            | of biofuel (first and second generation)                       |
| 6. Conditions              | -                                                              |
| 7. Algorithm               | Not comprehensible                                             |
| 8. Assessment of the model | -                                                              |
| a) Transferability         | Potentially yes.                                               |
| b) Reproducibility         | Difficult to reproduce with the information that is available. |

### 2.13 Assessment of biomass potentials for biofuel feedstock production in Europe: Methodology and results

| 1. Model name              | ABioE (Area available for growing Biomass feedstock for                |
|----------------------------|------------------------------------------------------------------------|
|                            | Energy production) (see above, 2.12), [16]                             |
| 2. Type of Biomass         | Biofuels                                                               |
| 3. Region/resolution       | Europe (EU27+Switzerland, Norway, the Ukraine)/1km <sup>2</sup> / 1 ha |
| 4. Input                   | Geographical data (CORINE), agricultural data, data                    |
|                            | regarding the use of biomass                                           |
| 5. Output                  | Possible future land use for producing resources for biofuels          |
| 6. Conditions              | -                                                                      |
| 7. Algorithm               | Complex algorithm, see figure 9                                        |
|                            | Target function see figure 8                                           |
| 8. Assessment of the model | Potentially yes, further analysis of the 70 pages is needed            |
| a) Transferability         | Potentially yes                                                        |
| b) Reproducibility         | Yes                                                                    |

### (1) $ABioFuel_{t,c} = AAgric_{2000-02,c} - ABuiltUp_{t,c} - AFoodFeed_{t,c}$ [ha]

| $ABioFuel_{t,c}$            | Available land for bio-fuel feedstock production in future year t of country c                                                                        | [ha] |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| AAgric <sub>2000–02,c</sub> | Agricultural land in country c in base period 2000-02                                                                                                 | [ha] |
| $ABuiltUp_{t,c}$            | Increases in built-up and associated land areas between base period 2000-02 and future year t in country c                                            | [ha] |
| $AFoodFeed_{t,c}$           | Agricultural land area requirements in country c for domestically produced food<br>and feed (the SSR <sup>15</sup> -fraction of domestic consumption) | [ha] |
| t                           | Future year t                                                                                                                                         |      |
| с                           | Country c                                                                                                                                             |      |

Figure 8: Target function, [16]

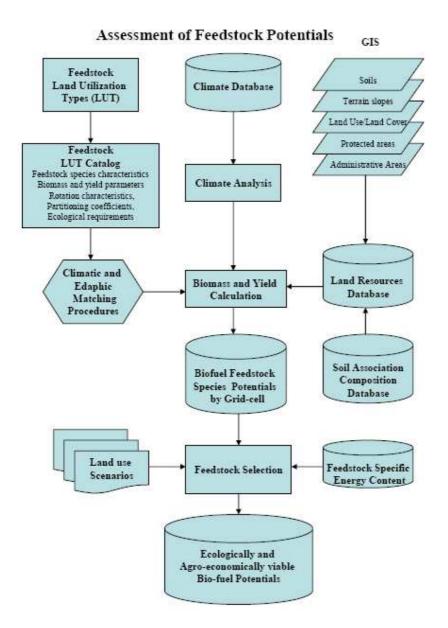



Figure 9: Method for evaluating resources for biofuel-potentials, [16]

## 2.14 Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures. Part I: Land productivity potentials

| 1. Model name        | See above, 2.13, [17] |
|----------------------|-----------------------|
| 2. Type of Biomass   | Biofuels              |
| 3. Region/resolution | See above             |
| 4. Input             | See above             |
| 5. Output            | See above             |
| 6. Conditions        | See above             |
| 7. Algorithm         | See above             |

| 8. Assessment of the model | See above |
|----------------------------|-----------|
| a) Transferability         | See above |
| b) Reproducibility         | See above |

## 2.15 The application of simulated NPP data in improving the assessment of the spatial distribution of biomass in Europe

| 1. Model name              | -, [18]                                                    |
|----------------------------|------------------------------------------------------------|
| 2. Type of Biomass         | Straw and forest wood                                      |
| 3. Region/resolution       | Europe/resolution of output data: 27,83 km <sup>2</sup>    |
| 4. Input                   | Statistical data from FAOSTAT, Eurostat and UNECE/FAO; GIS |
|                            | data from the land cover classification PELCOM,            |
|                            | EuroGeographics and from the German Remote Sensing Data    |
|                            | Center                                                     |
| 5. Output                  | A map of biomass yields                                    |
| 6. Conditions              | -                                                          |
| 7. Algorithm               | -                                                          |
| 8. Assessment of the model | -                                                          |
| a) Transferability         | Due to different sizes of the regions, the model is rather |
|                            | unsuitable for our project.                                |
| b) Reproducibility         | -                                                          |

## 2.16 Assessment of bioenergy potential in Sicily: A GIS-based support methodology

| 1. Model name        | -, [19]                                                   |
|----------------------|-----------------------------------------------------------|
| 2. Type of Biomass   | Agriculture energy cultivations, forest harvesting, short |
|                      | rotation forestry, food and wood industries               |
| 3. Region/resolution | Sicily/100 m                                              |

| 4. Input                   | CORINE, geological, topological and morphological maps,         |
|----------------------------|-----------------------------------------------------------------|
|                            | climate and rain maps                                           |
| 5. Output                  | Total productivity of regional forest areas, both in terms of   |
|                            | marketable wood and in terms of by-products.                    |
| 6. Conditions              | -                                                               |
| 7. Algorithm               | E.g. biomass from forest areas: The first step is the           |
|                            | individuation and analysis of the geographic localization of    |
|                            | forest resources through the Territorial Information System;    |
|                            | the second is the accounting of sustainable total productivity, |
|                            | by means of a yield coefficient                                 |
| 8. Assessment of the model | -                                                               |
| a) Transferability         | -                                                               |
| b) Reproducibility         | Not totally clear, but many different types of data are needed. |

## 2.17 EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements

| 1. Model name              | -, [20]                                                     |
|----------------------------|-------------------------------------------------------------|
| 2. Type of Biomass         | Wooden biomass (broadleaf wood and conifers)                |
| 3. Region/resolution       | EU/500 m * 500 m (25 ha)                                    |
| 4. Input                   | Remote sensing data (CORINE, MODIS), statistical field data |
| 5. Output                  | Cubic meter per hectare (m <sup>3</sup> /ha)                |
| 6. Conditions              | See paper                                                   |
| 7. Algorithm               | -                                                           |
| 8. Assessment of the model | -                                                           |
| a) Transferability         | -                                                           |
| b) Reproducibility         | -                                                           |

2.18 Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates

| 1. Model name              | -, [21]                                                        |
|----------------------------|----------------------------------------------------------------|
| 2. Type of Biomass         | Forest                                                         |
| 3. Region/resolution       | Machandinho d'Oeste, Brazil / 1 km x 1km                       |
| 4. Input                   | TM (Landsat Thematic mapper), LiDAR (Light Detection and       |
|                            | Ranging)                                                       |
| 5. Output                  | Aboveground forest carbon in t/ha                              |
| 6. Conditions              | -                                                              |
| 7. Algorithm               | -                                                              |
| 8. Assessment of the model | It is a kind of standard procedure for forest biomass          |
|                            | estimation with lidar. In our project, we might lack sample    |
|                            | plots and our point density is lower than the one mentioned in |
|                            | the paper.                                                     |
| a) Transferability         | -                                                              |
| b) Reproducibility         | -                                                              |

### 2.19 Applying Enhanced k-Nearest Neighbor Approach on

SatelliteImages for Forest Biomass Estimation of Vellore District

| 1. Model name              | -, [22]                                                          |
|----------------------------|------------------------------------------------------------------|
| 2. Type of Biomass         | -                                                                |
| 3. Region/resolution       | Vellore (=Indien)                                                |
| 4. Input                   | Images from PRISM-satellite, frost-filter to reduce noise        |
| 5. Output                  | -                                                                |
| 6. Conditions              | -                                                                |
| 7. Algorithm               | Nearest-neighbor classification (k-nearest-neighbor).            |
|                            | (Algorithm: non-parametric, automatic learning procedure),       |
|                            | classification of points with orientation on the closest points. |
| 8. Assessment of the model | The study is not on biomass, but on vegetated areas. Journal is  |

|                    | one of the hundreds emerging journals from India with |
|--------------------|-------------------------------------------------------|
|                    | questionable quality.                                 |
| a) Transferability | -                                                     |
| b) Reproducibility | •                                                     |

## 2.20 Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment

| 1. Model name              | -, [23]                                                      |
|----------------------------|--------------------------------------------------------------|
| 2. Type of Biomass         |                                                              |
| 3. Region/resolution       | -                                                            |
| 4. Input                   | This paper is a review paper, providing a state-of-the-art   |
|                            | review of remote sensing, with a particular focus on biomass |
|                            | estimation, including new findings with fullwave airborne    |
|                            | laser scanning. Not all the models have been reviewed,       |
|                            | however, we included this paper in our literature research.  |
| 5. Output                  | -                                                            |
| 6. Conditions              | -                                                            |
| 7. Algorithm               | -                                                            |
| 8. Assessment of the model | -                                                            |
| a) Transferability         | -                                                            |
| b) Reproducibility         | -                                                            |

## 2.21 Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data

| 1. Model name              | -, [24]                                                  |
|----------------------------|----------------------------------------------------------|
| 2. Type of Biomass         | Forest                                                   |
| 3. Region/resolution       | North-Central Idaho                                      |
| 4. Input                   | LiDar data/30 m x 30 m                                   |
| 5. Output                  | Basal area in m²/ha                                      |
| 6. Conditions              | -                                                        |
| 7. Algorithm               | -                                                        |
| 8. Assessment of the model | The paper is on field sample imputation methods to Lidar |
|                            | metrics. It can be the basis for further treatment and   |

|                    | calculations towards biomass estimates, but is not basically |
|--------------------|--------------------------------------------------------------|
|                    | suited for our project.                                      |
| a) Transferability | -                                                            |
| b) Reproducibility | •                                                            |

### 2.22 Best practices for crop area estimation with Remote Sensing

| 1. Model name              | -, [25]                                                        |
|----------------------------|----------------------------------------------------------------|
| 2. Type of Biomass         | -                                                              |
| 3. Region/resolution       | -                                                              |
| 4. Input                   | This document intends to give guidelines on the feasibility of |
|                            | different approaches and general rules on the accuracy         |
|                            | assessment that should be respected when reporting results of  |
|                            | crop area estimates. The document focuses on methods that      |
|                            | can be considered operational or pre-operational. Crop area    |
|                            | estimation is addressed, but most criteria can be applied to   |
|                            | land cover area estimation f. environmental purposes. What     |
|                            | the authors analyze is the step from classified images to area |
|                            | estimation. The authors first mention tools that are at a      |
|                            | research level, and then they give a rough classification of   |
|                            | situations from the point of view of the user.                 |
|                            | This paper is included in our literature research because it   |
|                            | might include important information on the procedure.          |
| 5. Output                  | -                                                              |
| 6. Conditions              | -                                                              |
| 7. Algorithm               | -                                                              |
| 8. Assessment of the model | -                                                              |
| a) Transferability         |                                                                |
| b) Reproducibility         | -                                                              |

## 2.23 Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential

| 1. Model name              | -, [27]                                                         |
|----------------------------|-----------------------------------------------------------------|
| 2. Type of Biomass         | Energy crop, agriculture and forestry residues, waste biomass   |
| 3. Region/resolution       | Switzerland                                                     |
| 4. Input                   | Data from other literature, not mentioned in the text           |
| 5. Output                  | Technical, sustainable, used and remaining biomass potential    |
|                            | of Switzerland. Heating values in GJ/t (dw), potentials in PJ   |
| 6. Conditions              | -                                                               |
| 7. Algorithm               | -                                                               |
| 8. Assessment of the model | -                                                               |
| a) Transferability         | The authors do not explicitly name the data they used, so it is |
|                            | hard to decide whether we could use this model in our project.  |
| b) Reproducibility         | -                                                               |

#### 2.24 Sustainable potential of timber production in Swiss forest

| 1. Model name              | Massimo, [28]                                                      |
|----------------------------|--------------------------------------------------------------------|
| 2. Type of Biomass         | Forest                                                             |
| 3. Region/resolution       | Switzerland / ha                                                   |
| 4. Input                   | Data from National Forest Inventories. This includes data          |
|                            | regarding the tree species, cross-section dimension at breast-     |
|                            | height, production area, site quality, altitude, basal area of the |
|                            | tree population, average cross-section dimension at breast         |
|                            | height of the 100 thickest trees per hectare, a factor expressing  |
|                            | competition, reaction of trees on thinning measures                |
| 5. Output                  | The model forecasts the development of the forest according        |
|                            | to its management, the amount of pine- and hardwood are            |
|                            | given in million m <sup>3</sup> .                                  |
| 6. Conditions              | -                                                                  |
| 7. Algorithm               | -                                                                  |
| 8. Assessment of the model | Very forest management focused with high spatial resolution        |
|                            | and fine grained parameters.                                       |
| a) Transferability         | Rather too detailed.                                               |
| b) Reproducibility         | -                                                                  |

2.25 Analysis of forest dynamics under changing environmental conditions - New information for forest planning by coupling models on the example of the forest enterprise Zittau

| 1. Model name        | Balance                                                           |
|----------------------|-------------------------------------------------------------------|
| 2. Type of Biomass   | Forest biomass                                                    |
| 3. Region/resolution | Germany                                                           |
| 4. Input             | Using the physiological single tree growth model BALANCE,         |
|                      | vitality of forest stands is simulated in dependence of the site- |

|                            | related factors, climate and stand structure. Data regarding     |
|----------------------------|------------------------------------------------------------------|
|                            | daily averages of measured temperature, precipitation, global    |
|                            | radiation, humidity and wind speed is needed. Furthermore,       |
|                            | data regarding tree position, initial tree and crown height as   |
|                            | well as initial dbh are required.                                |
| 5. Output                  | Diameter at breast height increment of trees, tree height, leave |
|                            | coloring.                                                        |
| 6. Conditions              | •                                                                |
| 7. Algorithm               | -                                                                |
| 8. Assessment of the model | Diameter at breast height increment of trees, tree height, leave |
|                            | coloring.                                                        |
| a) Transferability         | -                                                                |
| b) Reproducibility         |                                                                  |

### 2.26 Effects of environmental changes on the vitality of forest stands

| 1. Model name              | -, [29]                                                  |
|----------------------------|----------------------------------------------------------|
| 2. Type of Biomass         | -                                                        |
| 3. Region/resolution       | -                                                        |
| 4. Input                   | -                                                        |
| 5. Output                  | See 2.25 Analysis of forest dynamics under changing      |
|                            | environmental conditions - New information for forest    |
|                            | planning by coupling models on the example of the forest |
|                            | enterprise Zittau                                        |
| 6. Conditions              | -                                                        |
| 7. Algorithm               | -                                                        |
| 8. Assessment of the model | -                                                        |
| a) Transferability         | -                                                        |
| b) Reproducibility         | -                                                        |

## 2.27 Identifying the regional straw potential for energetic use on the basis of statistical information

| 1. Model name        | -, [56]                                                                         |
|----------------------|---------------------------------------------------------------------------------|
| 2. Type of Biomass   | Agricultural biomass (straw from barley, wheat, rye, triticale, oats)           |
| 3. Region/resolution | Baden-Württemberg (Germany)/calculation for each community                      |
| 4. Input             | Statistical data of yields, distribution and use of areas, livestock            |
|                      | breeding                                                                        |
| 5. Output            | Amount of straw that is available (S), amount of straw that is needed           |
|                      | for livestock ( $D_{pig/cattle/sheep/horse/poultry}$ ), change of the amount of |
|                      | humus (B), potential energy required for each utilization path and              |
|                      | each scenario                                                                   |
| 6. Conditions        | None (the current use is demonstrated)                                          |
| 7. Algorithm         | (1) Amount of straw that is available in the communities:                       |
|                      | S = Y * (A - (A * W)) * R                                                       |
|                      | S Amount of straw that is available                                             |
|                      | Y Average yields of crop (2003-2007)                                            |
|                      | A Average amount of the area that has been                                      |
|                      | cultivated (2003 and 2007)                                                      |
|                      | WPart of the area that is used for whole crop silage                            |
|                      | R Straw-corn relationship of each type of crop                                  |

(2) Amount of straw needed for each type of feedstock:

$$Dswine = \left( \left( \frac{P1}{Pt} * SP1 * BP1 \right) + \left( \frac{P2}{Pt} * SP2 * BP2 \right) + \left( \frac{P3}{Pt} * SP3 * BP3 \right) + \left( \frac{P3}{Pt} * SP3 + B$$

| D <sub>pig</sub> | Amount of straw that is needed for pigs          |
|------------------|--------------------------------------------------|
| P <sub>1-6</sub> | Different categories of pigs (piglet-adult pigs) |
| Pt               | Number of all pigs                               |

(3) Change in the amount of humus:

## $B = (S^{"} \operatorname{cro}^{"} \mathbf{p}^{"} \downarrow^{"} 1^{"} * C^{"} \operatorname{cro}^{"} \mathbf{p}^{"} \downarrow^{"} 1^{"} + S^{"} \operatorname{cro}^{"} \mathbf{p}^{"} \downarrow^{"} 2^{"} * C^{"} \operatorname{cro}^{"} \mathbf{p}^{"}$

|                      | S                    | Share of crops on cropland in the municipality |
|----------------------|----------------------|------------------------------------------------|
|                      | crop <sub>1-n</sub>  | All major crops                                |
|                      | cover <sub>w/s</sub> | Cover crops in winter and summertime           |
|                      | С                    | Humus coefficient (pos./neg.)                  |
|                      | R                    | Amount of crop residues resulting from the     |
|                      |                      | cultivated crops                               |
|                      | D                    | Demand of straw as litter and food for         |
|                      |                      | animal husbandry                               |
|                      | М                    | Organic manure (municipality)                  |
|                      | Ν                    | Number of biogas plants (municipality)         |
|                      | 0                    | Mean output of digestates                      |
|                      | $C_{\text{Biogas}}$  | Humus coeff. for digestates                    |
|                      | А                    | Total agricultural land of the municipality    |
| 8. Assessment of the | -                    |                                                |
| model                |                      |                                                |
| a) Transferability   | We should            | be able to transfer it to our region.          |
| b) Reproducibility   | Yes.                 |                                                |

### 2.28 Energy wood potentials outside of the forest

| 1. Model name              | -, [57]                                                     |
|----------------------------|-------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                              |
| 3. Region/resolution       | Forests in Switzerland                                      |
| 4. Input                   | Data from land use statistics, interviews with experts      |
| 5. Output                  | Theoretical, technical and usable potentials in t per year  |
| 6. Conditions              | -                                                           |
| 7. Algorithm               | -                                                           |
| 8. Assessment of the model | -                                                           |
| a) Transferability         | We rather do not want to have extra work to do interviewing |
|                            | experts. Not so suitable.                                   |
| b) Reproducibility         | -                                                           |

## 2.29 Bioenergy crop models: descriptions, data requirements, and future challenges

| 1. Model name              | -, [30]                                                      |
|----------------------------|--------------------------------------------------------------|
| 2. Type of Biomass         | -                                                            |
| 3. Region/resolution       | -                                                            |
| 4. Input                   | This paper is a review paper, providing a state-of-the-art   |
|                            | review of remote sensing, with a particular focus on biomass |
|                            | estimation, including new findings with fullwave airborne    |
|                            | laser scanning. Not all the models have been reviewed,       |
|                            | however, we included this paper in our literature research.  |
| 5. Output                  | -                                                            |
| 6. Conditions              | -                                                            |
| 7. Algorithm               | -                                                            |
| 8. Assessment of the model | -                                                            |
| a) Transferability         | -                                                            |
| b) Reproducibility         | -                                                            |

### 2.30 Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS

| 1. Model name              | -, [31]                                                    |
|----------------------------|------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                             |
| 3. Region/resolution       | 714,000 ha of forest in Canada                             |
| 4. Input                   | Forest inventory data, moderate resolution remotely sensed |
|                            | imagery (Landsat)                                          |
| 5. Output                  | Above-ground biomass in mega tons                          |
| 6. Conditions              | -                                                          |
| 7. Algorithm               | -                                                          |
| 8. Assessment of the model | -                                                          |

b) Reproducibility

High demand on input data and calculations of very fine resolution

## 2.31 Collaborative research project integrating optimization approaches for the supply of sustainable fuel wood

-

| 1. Model name              | -, [32]                                                       |
|----------------------------|---------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                                |
| 3. Region/resolution       | Rottenburg/small and private forests                          |
| 4. Input                   | Laserscanning                                                 |
| 5. Output                  | Analyses and information on the wooden energy potential,      |
|                            | questions regarding the state of the forest, exploitation,    |
|                            | ownership, restrictions, determining the use-, economical and |
|                            | technical potential.                                          |
| 6. Conditions              | -                                                             |
| 7. Algorithm               | The possible use of wood is demonstrated by using GIS data.   |
| 8. Assessment of the model | -                                                             |
| a) Transferability         | Yes                                                           |
| b) Reproducibility         | -                                                             |

#### 2.32 Status of biomass resource, version 3

| 1. Model name              | Crop rotata, [58]                                             |
|----------------------------|---------------------------------------------------------------|
| 2. Type of Biomass         | Forest and crop biomass                                       |
| 3. Region/resolution       | Europe                                                        |
| 4. Input                   | Data from EUROSTAT, FAO, FADN, TBFRA, ESDB, Corine LC,        |
|                            | Terrastrat                                                    |
| 5. Output                  | Technically available biomass potential in tons of dry matter |
| 6. Conditions              | -                                                             |
| 7. Algorithm               | -                                                             |
| 8. Assessment of the model | -                                                             |

#### b) Reproducibility

### 2.33 Collection of energy wood potential and its availability in forest and open land with new remote sensing methods

-

-

| 1. Model name              | -, [33]                                                         |
|----------------------------|-----------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                                  |
| 3. Region/resolution       | Small areas, e.g. the area of North-Karlsruhe                   |
| 4. Input                   | Airborne laser scanner data, color infrared orthophotos         |
|                            | combined with forest inventory data                             |
| 5. Output                  | Detailed maps showing the distribution of forest biomass        |
| 6. Conditions              | -                                                               |
| 7. Algorithm               | -                                                               |
| 8. Assessment of the model | -                                                               |
| a) Transferability         | Andreas Fritz is planning to use some aspects of this model, he |
|                            | knows the person who wrote the paper                            |
| b) Reproducibility         | •                                                               |

### 2.34 3D segmentation of non-forest trees for biomass assessment using LiDAR data

| 1. Model name        | -, [34]                                                   |
|----------------------|-----------------------------------------------------------|
| 2. Type of Biomass   | Forest biomass (single tree, tree stands and hedges)      |
| 3. Region/resolution | Sites in six federal States of Germany, mostly Baden-     |
|                      | Württemberg                                               |
| 4. Input             | First and last pulse LiDAR-data                           |
| 5. Output            | -                                                         |
| 6. Conditions        | LiDAR data is used to model the relationship between the  |
|                      | vegetation volume derided from LiDAR measurements and the |

|                            | above-ground biomass (ABG) for well-defined grove types.       |
|----------------------------|----------------------------------------------------------------|
|                            | The paper is reporting about results from a novel 3D           |
|                            | segmentation adopted for non-forest trees and the follow-on    |
|                            | vegetation volume calculation. Furthermore, the focus is on    |
|                            | the estimation of AGB from the diameter at breast height and   |
|                            | the tree height. Finally, conversion factors are derived which |
|                            | relate the AGB to the LiDAR derived volume calculations.       |
| 7. Algorithm               | -                                                              |
| 8. Assessment of the model | -                                                              |
| a) Transferability         | The model uses N-Cut algorithm which requires point            |
|                            | densities which we do not have.                                |
| b) Reproducibility         | No                                                             |

## 2.35 Estimating forest LAI profiles and structural parameters using a ground-based laser called Echidna

| 1. Model name              | -, [35]                                                        |
|----------------------------|----------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                                 |
| 3. Region/resolution       | The Sierra Nevada national forest, California, and the Harvard |
|                            | forest, Petersham/50 m x 50 m                                  |
| 4. Input                   | Data from multiple scans of the ground-based full-waveform     |
|                            | lidar                                                          |
| 5. Output                  | Forest structural parameters like diameter at breast height,   |
|                            | tree height, crown diameter, crown height and foliage area     |
|                            | volume density are estimated.                                  |
| 6. Conditions              | -                                                              |
| 7. Algorithm               | -                                                              |
| 8. Assessment of the model | -                                                              |
| a) Transferability         | -                                                              |
| b) Reproducibility         | We do not have a full wave TLS. coverage is not suitable to us |

2.36 Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches

| 1. Model name              | -, [37]                                                       |
|----------------------------|---------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                                |
| 3. Region/resolution       | Study locations in Arizona and Minnesota/30 m                 |
| 4. Input                   | Forest inventory data and analysis field data                 |
| 5. Output                  | Maps of biomass dynamics including maps depicting the         |
|                            | location and timing of forest disturbance and regrowth to     |
|                            | assess the biomass consequences of these processes over large |
|                            | areas and long time frames                                    |
| 6. Conditions              | -                                                             |
| 7. Algorithm               | -                                                             |
| 8. Assessment of the model |                                                               |
| a) Transferability         | Data demand is rather high and tailored on north America.     |
| b) Reproducibility         |                                                               |

2.37 Potential of woody biomass determination with the usa of UAV aerial imagesDetermining the potential of biomass of wood using UAVimages

| 1. Model name              | -, [38]                                                                                                                 |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                                                                                          |
| 3. Region/resolution       | Study sites in Thuringia and Brandenburg/10m x 10m/20m x 20m                                                            |
| 4. Input                   | Aerial images with information regarding foliated and<br>unfoliated vegetation, as well as vegetation covered with snow |
| 5. Output                  | Tons of biomass available in a certain area                                                                             |
| 6. Conditions              | -                                                                                                                       |
| 7. Algorithm               | -                                                                                                                       |
| 8. Assessment of the model | -                                                                                                                       |
| a) Transferability         | -                                                                                                                       |

### 2.38 Aggregating pixel-level basal area predictions derived from LiDAR data to industrial forest stands in North-Central Idaho

-

| 1. Model name              | -, [39]                               |
|----------------------------|---------------------------------------|
| 2. Type of Biomass         | Conifer landscapes                    |
| 3. Region/resolution       | North-Central Idaho/30m               |
| 4. Input                   | LiDar data and samples of field plots |
| 5. Output                  | Basal area per acre                   |
| 6. Conditions              | -                                     |
| 7. Algorithm               | -                                     |
| 8. Assessment of the model | -                                     |
| a) Transferability         | -                                     |
| b) Reproducibility         | -                                     |

#### 2.39 Forest biomass mapping from lidar and radar synergies

| 1. Model name              | -, [40]                             |
|----------------------------|-------------------------------------|
| 2. Type of Biomass         | Forest biomas                       |
| 3. Region/resolution       | Howland, Maine                      |
| 4. Input                   | Aircraft borne lidar and SAR data   |
| 5. Output                  | Above-ground biomass map (in Mg/ha) |
| 6. Conditions              | -                                   |
| 7. Algorithm               | -                                   |
| 8. Assessment of the model | -                                   |
| a) Transferability         | -                                   |
| b) Reproducibility         | -                                   |

### 2.40 L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest

| 1. Model name              | -, [41]                                                  |
|----------------------------|----------------------------------------------------------|
| 2. Type of Biomass         | Hemiboreal forest biomass                                |
| 3. Region/resolution       | Southern Sweden/the SAR images used in the analysis were |
|                            | multi-look images with about 2.5 looks.                  |
| 4. Input                   | Polarimetric SAR backscatter measurements at low         |
|                            | frequencies.                                             |
| 5. Output                  | Biomass estimates in t/ha                                |
| 6. Conditions              | -                                                        |
| 7. Algorithm               | -                                                        |
| 8. Assessment of the model | -                                                        |
| a) Transferability         | -                                                        |
| b) Reproducibility         | -                                                        |

## 2.41 Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers

| 1. Model name        | -, [42]                                                      |
|----------------------|--------------------------------------------------------------|
| 2. Type of Biomass   | Forest biomass                                               |
| 3. Region/resolution | Eastern Texas, USA/                                          |
| 4. Input             | LiDar data                                                   |
| 5. Output            | Biomass estimates in Mg/ha                                   |
| 6. Conditions        | The objective of this paper is to develop methods for scale- |
|                      | invariant estimation of forest biomass using lidar data. The |
|                      | proposed methods are a linear functional model and an        |
|                      | equivalent nonlinear model that use lidar-derived canopy     |
|                      | height distributions and canopy height quantile functions as |
|                      | predictors. Results suggest that the models can accurately   |
|                      | predict biomass and yield.                                   |
| 7. Algorithm         | -                                                            |

| 8. Assessment of the model | -                                                        |
|----------------------------|----------------------------------------------------------|
| a) Transferability         | Interesting approach since scale invariant predictors is |
|                            | actually what we need.                                   |
| b) Reproducibility         | ·                                                        |

# 2.42 Mapping the height and above ground biomass of a mixed forest using lidar and stereo Ikonos images

| 1. Model name              | -, [43]                                                         |
|----------------------------|-----------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                                  |
| 3. Region/resolution       | Forest area located in Quebec, Canada                           |
| 4. Input                   | LiDar data, IKONOS images, aerial photographs and field data    |
| 5. Output                  | Biomass estimates in Mg/ha                                      |
| 6. Conditions              | The objective of the paper was to assess the accuracy of the    |
|                            | forest height and biomass estimates derived from an Ikonos      |
|                            | stereo pair and a lidar digital terrain model (DTM). After the  |
|                            | Ikonos scenes were registered to the DTM with submeric          |
|                            | accuracy, tree heights were measured individually by            |
|                            | subtracting the photo-grammetric elevation of the treetop       |
|                            | from the lidar ground level of the tree base. Matched images of |
|                            | the stereo pair were used to create a digital surface model.    |
|                            | Matched images of the stereo pair were then used to create a    |
|                            | digital surface model. The latter was transformed to a canopy   |
|                            | height model by subtracting the lidar DTM. Plotwise height      |
|                            | percentiles were extracted from the Ikonos-lidar CHM and        |
|                            | used to predict the average dominant height and above-          |
|                            | ground biomass.                                                 |
| 7. Algorithm               | -                                                               |
| 8. Assessment of the model |                                                                 |
| a) Transferability         | -                                                               |
| b) Reproducibility         | -                                                               |

2.43 Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images

| 1. Model name              | -, [44]                                                             |
|----------------------------|---------------------------------------------------------------------|
| 2. Type of Biomass         | Forest biomass                                                      |
| 3. Region/resolution       | Wu-Yuan County, Jiangxi, China                                      |
| 4. Input                   | National forest inventory data and satellite images                 |
| 5. Output                  | The results showed that the methods reproduced not only the         |
|                            | spatial distribution of forest carbon, but also the spatial         |
|                            | pattern of variances of its estimates and was able to quantify      |
|                            | the contributions of uncertainties from the field plot data and     |
|                            | satellite images to the uncertainties of forest carbon estimates.   |
| 6. Conditions              | -                                                                   |
| 7. Algorithm               | -                                                                   |
| 8. Assessment of the model | -                                                                   |
| a) Transferability         | The focus lies on the variability within forest areas, so it is not |
|                            | that suitable for our project.                                      |
| b) Reproducibility         | -                                                                   |

### 2.44 Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR

| 1. Model name        | -, [45]                                                      |
|----------------------|--------------------------------------------------------------|
| 2. Type of Biomass   | Aboveground woody biomass                                    |
| 3. Region/resolution | Southwestern United States                                   |
| 4. Input             | Red band bidirectional factor data from NASA, moderate       |
|                      | resolution imaging spectroradiometer (MODIS)                 |
| 5. Output            | Aboveground woody biomass in Mg/ha                           |
| 6. Conditions        | Red band bidirectional reflectance factor data from the NASA |
|                      | MODerate resolution Imaging Spectroradiometer (MODIS)        |
|                      | acquired over the southwestern United States were            |

|                            | interpreted through a simple geometric-optical (GO) canopy   |
|----------------------------|--------------------------------------------------------------|
|                            | reflectance model to provide maps of fractional crown cover, |
|                            | mean canopy height, and aboveground woody biomass.           |
| 7. Algorithm               | -                                                            |
| 8. Assessment of the model | -                                                            |
| a) Transferability         | No – the model relies on MODIS images we don't have          |
| b) Reproducibility         | -                                                            |

### 2.45 Three-Dimensional Modeling of an Urban Park and Trees by Combined Airborne and Portable On-Ground Scanning LIDAR Remote Sensing

| 1. Model name              | -, [46]                                                       |
|----------------------------|---------------------------------------------------------------|
| 2. Type of Biomass         | Biomass from an urban park                                    |
| 3. Region/resolution       | National Garden of Tokyo                                      |
| 4. Input                   | LiDar data                                                    |
| 5. Output                  | Quantitative estimation of canopy volume, trunk volume and    |
|                            | of canopy cross-sectional area                                |
| 6. Conditions              | LIDAR data is used to visualize an urban park and to quantify |
|                            | biophysical variables of trees in the park. A digital canopy  |
|                            | height model and a digital terrain model generated from       |
|                            | airborne scanning LIDAR data provide precise images of the    |
|                            | ground surface and individual tree canopies. Airborne and on- |
|                            | ground Lidar images are combined to overcome blind regions    |
|                            | and to create a complete three-dimensional model of standing  |
|                            | trees.                                                        |
| 7. Algorithm               | -                                                             |
| 8. Assessment of the model |                                                               |
| a) Transferability         | -                                                             |
| b) Reproducibility         | -                                                             |

#### 2.46 Land Availability for Biofuel Production

| 1. Model name              | -, [47]                                                 |
|----------------------------|---------------------------------------------------------|
| 2. Type of Biomass         | Biomass for biofuels                                    |
| 3. Region/resolution       | Global, all continents                                  |
| 4. Input                   | Statistical data (global)                               |
| 5. Output                  | Land use for producing resources for biofuel production |
| 6. Conditions              | -                                                       |
| 7. Algorithm               | -                                                       |
| 8. Assessment of the model | -                                                       |
| a) Transferability         | No                                                      |
| b) Reproducibility         | No                                                      |

## 2.47 Biomass resources and costs: Assessment in different EU countries

| 1. Model name        | BIORAISE, [48]                                                  |
|----------------------|-----------------------------------------------------------------|
| 2. Type of Biomass   | Wood and biomass from agriculture                               |
| 3. Region/resolution | Selected locations in the Mediterranean EU countries: Spain,    |
|                      | Portugal, France, Italy and Greece                              |
| 4. Input             | CORINE Land Cover data, forestry data from the National         |
|                      | Forest Inventories and agricultural data from the EUROSTAT      |
|                      | Regional Statistics utility.                                    |
| 5. Output            | Potential resources in odt/yr, biomass extraction costs         |
| 6. Conditions        | Bioraise is a computer GIS based tool designed for the          |
|                      | calculation of agricultural and forest biomass resources,       |
|                      | collection and transportation costs. The tool is operated by a  |
|                      | web viewer interface which displays the geographic              |
|                      | environment of the included countries as well as their          |
|                      | background basic elements. The interface tool allows to         |
|                      | calculate the biomass resources existing within a determinate   |
|                      | surface around a previously selected site. The tool also allows |
|                      | estimating the biomass transport cost from any pixel within     |

|                            | the selected circle to the selected central site. |
|----------------------------|---------------------------------------------------|
| 7. Algorithm               | -                                                 |
| 8. Assessment of the model | -                                                 |
| a) Transferability         | -                                                 |
| b) Reproducibility         | -                                                 |

### 2.48 SOCRATES – an object-oriented model system for regional assessment of the impact of land use and climate change on soil and plant sizes

| 1. Model name        | SOCRATES (scenarios), a part is from ZEUS                           |
|----------------------|---------------------------------------------------------------------|
|                      | (program/model), [49]                                               |
| 2. Type of Biomass   | Agricultural biomass                                                |
| 3. Region/resolution | Basin of the river Uecker in Brandeburg, Germany/25 ha              |
| 4. Input             | GIS-maps; regional metrological data; data regarding crop- and      |
|                      | cultivation                                                         |
|                      | Modeling of soil types (1,5 m in depth), determining soil           |
|                      | characteristics                                                     |
| 5. Output            | Assessing consequences of land use- and climate change on           |
|                      | soil and plants, nitrogen exports                                   |
| 6. Conditions        | -                                                                   |
| 7. Algorithm         | Object-oriented model development in C++                            |
|                      | Indicators: abiotic and biotic, qualitative and quantitative, soil- |
|                      | and plant indicators: nitrogen export, evapotranspiration,          |
|                      | seepage, biomass and yield                                          |
|                      | 3 Objects: Plant, soil nitrogen, soil water                         |
|                      |                                                                     |
|                      | 1. Object plant: plant parameters, static numbers at the            |
|                      | moment of harvest, calculation of yields (site, weather,            |
|                      | culture management), description of the resulting                   |
|                      | dynamic development of biomass of plants until                      |
|                      | harvest (calculations are based on differential                     |

|                            | equations / Evolon-approach), taking into account         |
|----------------------------|-----------------------------------------------------------|
|                            | dependences of temperature, water and nitrogen.           |
|                            | 2. Object soil nitrogen: mineralization that is dependent |
|                            | on soil moisture and soil temperature.                    |
|                            | temporal resolution: one day                              |
|                            | 3. Object soil water: seepage, capillary ascent, actual   |
|                            | evapotranspiration                                        |
|                            | temporal resolution: one day                              |
| 8. Assessment of the model | GIS and scenario-simulationtool                           |
| a) Transferability         | Yes, potentially                                          |
| b) Reproducibility         | impossible with available information                     |

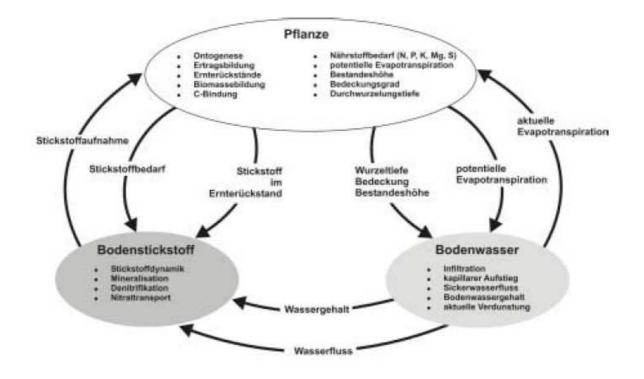
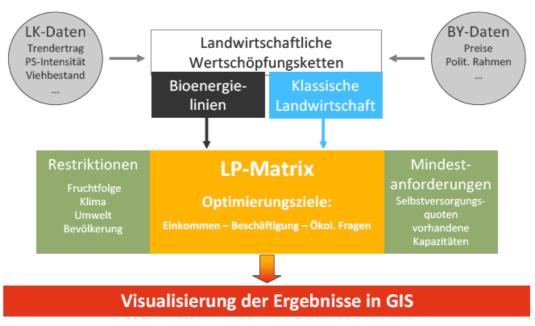



Figure 10: Model structure SOCRATES

### 2.49 Potential analysis for detection of woody biomass in Lower Saxony by remote sensing methods

| 1. Model name              | -, [50]                                                     |
|----------------------------|-------------------------------------------------------------|
| 2. Type of Biomass         | Biomass from landscape work                                 |
| 3. Region/resolution       | Lower Saxony/20 cm                                          |
| 4. Input                   | Digital ortho-photos used in ArcGIS, data from land surveys |
|                            | and from geo base information of Lower Saxony               |
| 5. Output                  | Assessments of available and of potential areas based on    |
|                            | random sampling                                             |
| 6. Conditions              | -                                                           |
| 7. Algorithm               | See paper                                                   |
| 8. Assessment of the model | Rather not that suitable for our project                    |
| a) Transferability         | Yes                                                         |
| b) Reproducibility         | Reproducibility depends on data                             |

2.50 Development and testing of a method for the estimation of regional dendromass balances on the example of North Rhine-Westphalia

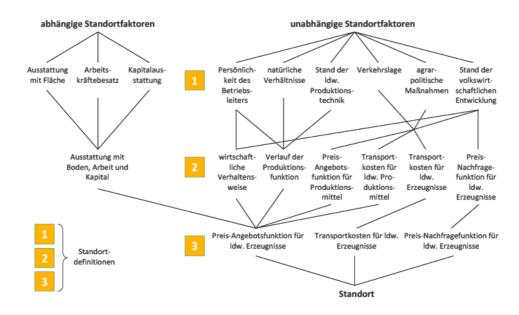

| 1. Model name              | -, [51]                                                 |
|----------------------------|---------------------------------------------------------|
| 2. Type of Biomass         | Wood                                                    |
| 3. Region/resolution       | North Rhine-Westphalia                                  |
| 4. Input                   | Statistical data for wood production- and usage         |
| 5. Output                  | Capturing the energetic and material use of wood        |
|                            | (dendromass). Balancing, comparison, use and potential. |
|                            | Calculating scenarios for the energetic use of wood     |
|                            | (dendromass) in small and large plants.                 |
| 6. Conditions              | -                                                       |
| 7. Algorithm               | See paper                                               |
| 8. Assessment of the model | Not that suitable for our project                       |
| a) Transferability         | Is possible but depends on the data that is available   |
| b) Reproducibility         | Potentially yes                                         |

#### **2.51 Competition for biomass**

| 1. Model name        | LaNuOpt, (Dissertation, Prof. Heißenhuber, TUM), [52]            |
|----------------------|------------------------------------------------------------------|
| 2. Type of Biomass   | Agricultural biomass                                             |
| 3. Region/resolution | Bavaria/1 ha                                                     |
| 4. Input             | Data from KTBL and LfL, from GENESIS-databases of the            |
|                      | Bavarian Statistical Office and Data Processing                  |
| 5. Output            | Modeling approach for evaluating the sustainability of biomass   |
|                      | cultivation with respect to socio-economic aspects (e.g. ground  |
|                      | rent). Visualization in GIS (see figure 11)                      |
|                      | The aim of the model is to find answers for the following        |
|                      | questions:                                                       |
|                      | Which consequences do political measures have on agriculture?    |
|                      | How does competitiveness of different production methods         |
|                      | change in dependence on changing market conditions?              |
|                      | Which prices have to be paid for an agricultural product so that |
|                      | food demand can be satisfied?                                    |
|                      | Which effects result for employment and greenhouse gases?        |
|                      | Possible behavior of farmers should be predicted in case of      |
|                      | changing general conditions, especially when it comes to         |
|                      | competition between food production and producing bioenergy      |
|                      | (focus is on an economic background).                            |
|                      | Ground rent is calculated, which is a full cost accounting.      |
|                      |                                                                  |
|                      | • The smallest decision making unit is 1 ha of agricultural area |
|                      | • Agricultural data from KTBL and LfL, as well as                |
|                      | information regarding the agricultural structure                 |
|                      | • Results can be chosen within a time frame from 2008            |
|                      | and 2028                                                         |
|                      | Location factors:                                                |

• Dependent location factors  $\rightarrow$  company-specific factors

|                            | <ul> <li>3 production factors – soil, labor, funds</li> </ul>     |
|----------------------------|-------------------------------------------------------------------|
|                            | • Independent location factors $\rightarrow$ location-specific    |
|                            | circumstances                                                     |
|                            | o 3 Definitions of locations with different location              |
|                            | factors, see figure 12                                            |
| 6. Conditions              | •                                                                 |
| 7. Algorithm               | Complex algorithm (however, its description is insufficient), the |
|                            | paper is rather an approach to a model instead of a model itself. |
| 8. Assessment of the model | Interesting model-approach, specially its focus on socio-         |
|                            | economic aspects. Comprehensive land use model that focuses       |
|                            | on economical evaluations. However, it is very complex and        |
|                            | cannot be reproduced without further information (especially      |
|                            | the location factors and the algorithm).                          |
| a) Transferability         | Potentially yes, if we have the right data                        |
| b) Reproducibility         | The information that is available is insufficient                 |




Anmerkungen:

LK Landkreis

BY Bayern

Figure 11: Set-up of the model LaNuOpt, [52]



Quelle: WEINSCHENCK und HENRICHSMEYER 1966, S. 205

Figure 12: Link between the location factors, [52]

## 2.52 Bioenergy in the global energy system, possibilities and limitations

| 1. Model name              | Scenarios (Consequences for agriculture and the                  |
|----------------------------|------------------------------------------------------------------|
|                            | environment), Institution: ANNA in Müllheim (Baden) [53]         |
| 2. Type of Biomass         | Agricultural biomasse                                            |
| 3. Region/resolution       | German Upper-Rhine-Region                                        |
| 4. Input                   | Statististical data                                              |
| 5. Output                  | Scenarios/ecological assessment for future forestry, maize-      |
|                            | and crop cultivation with respect to climate change              |
| 6. Conditions              | •                                                                |
| 7. Algorithm               | Evaluating the possibility of producing bioenergy resources      |
|                            | instead of intense agricultural farming. The aim is the nitrate- |
|                            | removal from ground water.                                       |
| 8. Assessment of the model | Scenarios                                                        |
| a) Transferability         | -                                                                |
| b) Reproducibility         | Yes                                                              |

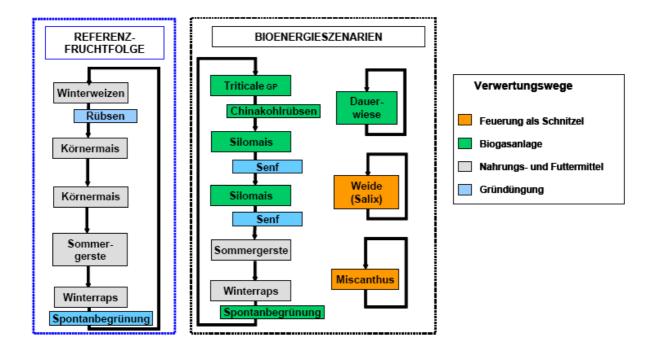



Figure 13: Scenarios of bioenergy, [53]

### 2.53 Bioenergie im globalen Energiesystem, Möglichkeiten und Grenzen

| 1. Model name              | - (TU Hamburg-Harburg, Prof Kaltschmitt qnd DBFZ,                 |
|----------------------------|-------------------------------------------------------------------|
|                            | Daniela Thrän) [54]                                               |
| 2 True of Diamons          | All linds of history                                              |
| 2. Type of Biomass         | All kinds of biomass                                              |
| 3. Region/resolution       | Calculation of all the biomass on earth in joule/global, $EJ/a^2$ |
| 4. Input                   | Statistical data, modeling the amount of biomass                  |
| 5. Output                  | Summation of biomasses                                            |
| 6. Conditions              | -                                                                 |
| 7. Algorithm               | (?)                                                               |
| 8. Assessment of the model | Coarse solution                                                   |
| a) Transferability         | No (?)                                                            |
| b) Reproducibility         | No(?)                                                             |

# 2.54 Master thesis Daniel Ketzer – Model-based assessment of biomass with scenarios for the Odenwaldkreis

| 1. Model name              | DEBIO, [55]          |
|----------------------------|----------------------|
| 2. Type of Biomass         | Agricultural biomass |
| 3. Region/resolution       | Odenwaldkreis        |
| 4. Input                   | -                    |
| 5. Output                  | -                    |
| 6. Conditions              | -                    |
| 7. Algorithm               | See thesis           |
| 8. Assessment of the model | -                    |
| a) Transferability         | Yes                  |
| b) Reproducibility         | Yes                  |

#### **Sources**

- [1] Wissenschaftlicher Beirat Globale Umweltveränderungen: *Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung*. Berlin, 2009.
- [2] Brozio, S. et al.: Modellierung landwirtschaftlicher Bioenergie. *Tagungsband Gil*, 2006, p. 45–48.
- [3] Fiorese, G., Guariso, G.: A GIS-based approach to evaluate biomass potential from energy crops at regional scale. *Environ. Model. Softw.*, **25** (6), 2010, p. 702–711.
- [4] Lovett, A.A. et al.: Land Use Implications of Increased Biomass Production Identified by GIS-Based Suitability and Yield Mapping for Miscanthus in England. *Bioenergy Res.*, 2 (1-2), 2009, p. 17–28.
- [5] Mirschel, W. et al.: Regionaldifferenzierte Abschätzung der Auswirkun-gen des Klimawandels auf die Erträge von wichtigen Fruchtarten im Freistaat Thüringen mittels Ertrags-simulation mit YIELDSTAT. *Zalf Müncheberg*, 2012.
- [6] Kindler, R.: *Ertragsschätzung in den neuen Bundesländern*. St. Augustin: Pflug und Feder GmbH, 1992.
- [7] Mirschel, W. et al.: Auswirkungen des Klimawandels auf die Ertragsleistung ausgewählter landwirtschaftlicher Fruchtarten im Freistaat Sachsen: ein landesweite regionaldifferenzierte Abschätzung. Müncheberg/ Tharandt: ZALF, TU Dresden, Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, 2008.
- [8] Voivontas, D. et al.: Assessment of biomass potential for power production: a GIS based method. *Biomass Bioenergy*, **20** (2), 2001, p. 101–112.
- [9] Gömann, H. et al.: Beschreibung des Regionalisierten Agrar-und Umweltinformationssystems RAUMIS im Rahmen des Projektes "Nachwachsende Rohstoffe und Landnutzung. Integration der Bioenergie in ein nachhaltiges Energiekonzept (NaRoLa)". URL: h ttp. 2009.
- [10] Hendrich, C., Hochanger, A.: Modellierung der Biomasseverteilung auf waldwachstumskundlichen Versuchsflächen1. no date.
- [11] Tum, M.: *Modelling and validation of agricultural and forest biomass potentials for Germany and Austria*. Göttingen: Georg-August-Universität, 2012.
- [12] Schultze, M. et al.: Regionale Potenziale für die Bereitstellung von Energieholz– Ergebnisse einer Studie in Nord-Ost Brandenburg. no date.
- [13] Pretzsch, H. et al.: The single tree-based stand simulator SILVA: construction, application and evaluation. *For. Ecol. Manag.*, **162** (1), 2002, p. 3–21.

- [14] Boschetti, M. et al.: Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information. *Agric. Ecosyst. Environ.*, **118** (1-4), 2007, p. 267–272.
- [15] Fischer, G. et al.: Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios. *Biomass Bioenergy*, 34 (2), 2010, p. 173–187.
- [16] Fischer, G. et al.: Assessment of biomass potentials for biofuel feedstock production in Europe: Methodology and results. 2007.
- [17] Fischer, G. et al.: Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures. Part I: Land productivity potentials. *Biomass Bioenergy*, 34 (2), 2010, p. 159–172.
- [18] Gehrung, J., Scholz, Y.: The application of simulated NPP data in improving the assessment of the spatial distribution of biomass in Europe. *Biomass Bioenergy*, 33 (4), 2009, p. 712–720.
- [19] Beccali, M. et al.: Assessment of bioenergy potential in Sicily: A GIS-based support methodology. *Biomass Bioenergy*, **33** (1), 2009, p. 79–87.
- [20] Gallaun, H. et al.: EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. *For. Ecol. Manag.*, 260 (3), 2010, p. 252–261.
- [21] Lu, D. et al.: Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. *Int. J. For. Res.*, **2012**, 2012, p. 1–16.
- [22] Maiti, A., Kumar, S.K.Y.N.S.: Applying Enhanced k-Nearest Neighbor Approach On SatelliteImages forForest Biomass Estimation of Vellore District. no date.
- [23] Koch, B.: Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. *Isprs J. Photogramm. Remote Sens.*, **65** (6), 2010, p. 581–590.
- [24] Hudak, A.T. et al.: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. *Remote Sens. Environ.*, **112** (5), 2008, p. 2232– 2245.
- [25] Best practices for crop area estimation with Remote Sensing. 2008.
- [26] Ramezani, H., Holm, S.: Sample based estimation of landscape metrics; accuracy of line intersect sampling for estimating edge density and Shannon's diversity index. *Environ. Ecol. Stat.*, **18** (1), 2009, p. 109–130.
- [27] Steubing, B. et al.: Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential. *Renew. Sustain. Energy Rev.*, **14** (8), 2010, p. 2256–2265.
- [28] Kaufmann, E.: Nachhaltiges Holzproduktionspotenzial im Schweizer Wald. *Schweiz. Z. Forstwes.*, **162** (9), 2011, p. 300–311.

- [29] Rötzer, T. et al.: Effects of environmental changes on the vitality of forest stands. *Eur. J. For. Res.*, **124** (4), 2005, p. 349–362.
- [30] Bioenergy crop models: descriptions, data requirements, and future challenges -Surendran Nair - 2012 - GCB Bioenergy - Wiley Online Library. no date.
- [31] Wulder, M.A. et al.: Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. *Sensors*, **8** (1), 2008, p. 529–560.
- [32] Schultz, J.-D. et al.: Verbund-Forschungsprojekt Integrierende Optimierungsansätze für eine nachhaltige Energieholzversorgung. no date.
- [33] Straub, C.: Erfassung des Energieholzpotentials und seiner Verfügbarkeit im Wald und im Offenland mit neuen Fernerkundungsmethoden. Dissertation Uni Freiburg, 1991.
- [34] Rentsch, M. et al.: 3D segmentation of non-forest trees for biomass assessment using LiDAR data. no date.
- [35] Jupp, D.L.B. et al.: Estimating forest LAI profiles and structural parameters using a ground-based laser called 'Echidna(R). *Tree Physiol.*, **29** (2), 2008, p. 171–181.
- [36] Zhao, F. et al.: Measuring effective leaf area index, foliage profile, and stand height in New England forest stands using a full-waveform ground-based lidar. *Remote Sens. Environ.*, **115** (11), 2011, p. 2954–2964.
- [37] Powell, S.L. et al.: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. *Remote Sens. Environ.*, **114** (5), 2010, p. 1053–1068.
- [38] Ruppe, J. et al.: Biomassepotenzialermittlung von Gehölzen unter Nutzung von UAV-Luftbildern. no date.
- [39] Hudak, A. et al.: Aggregating pixel-level basal area predictions derived from LiDAR data to industrial forest stands in North-Central Idaho. Usda For. Serv., 14, 2008.
- [40] Sun, G. et al.: Forest biomass mapping from lidar and radar synergies. *Remote Sens. Environ.*, **115** (11), 2011, p. 2906–2916.
- [41] Sandberg, G. et al.: L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. *Remote Sens. Environ.*, **115** (11), 2011, p. 2874–2886.
- [42] Zhao, K. et al.: Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. *Remote Sens. Environ.*, **113** (1), 2009, p. 182–196.
- [43] St-Onge, B. et al.: Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images. *Int. J. Remote Sens.*, **29** (5), 2008, p. 1277–1294.

- [44] Wang, G. et al.: Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images. *For. Ecol. Manag.*, **258** (7), 2009, p. 1275–1283.
- [45] Chopping, M. et al.: Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR. *Remote Sens. Environ.*, **115** (11), 2011, p. 2943–2953.
- [46] Omasa, K. et al.: Three-Dimensional Modeling of an Urban Park and Trees by Combined Airborne and Portable On-Ground Scanning LIDAR Remote Sensing. *Environ. Model. Assess.*, **13** (4), 2007, p. 473–481.
- [47] Cai, X. et al.: Land Availability for Biofuel Production. *Environ. Sci. Technol.*, **45** (1), 2011, p. 334–339.
- [48] Esteban, L.S., Carrasco, J.E.: Biomass resources and costs: Assessment in different EU countries. *Biomass Bioenergy*, **35**, 2011, p. S21–S30.
- [49] Mirschel, W., Kurt, M.: SOCRATES–ein objektorientiertes Modellsystem zur regionalen Abschätzung der Auswirkungen von Landnutzungs-und Klimaänderungen auf Boden-und Pflanzengrößen. 2002.
- [50] Engel, A.-M. et al.: Potentialanalyse zur Erfassung holziger Biomasse in Niedersachsen mittels Fernerkundungsmethodik. no date.
- [51] Wenzelides, M., Schulte, A.: Entwicklung und Erprobung einer Methode zur Abschätzung von regionalen dendromasse-Bilanzen am Beispiel von Nordrhein-Westfalen. *Afl-Arch. Für Forstwes. Landschaftsökologie*, **42** (4), 2008, p. 145–157.
- [52] Rauh, S.M.: *Konkurrenz um Biomasse*. München, Freising: Technische Universität München, 2010.
- [53] Hölscher, T. et al.: Energieproduktion aus landwirtschaftlicher Biomasse am Oberrhein–Auswirkungen für Landwirtschaft und Umwelt. 2007.
- [54] Kaltschmitt, M., Thrän, D.: Bioenergie im globalen Energiesystem Möglichkeiten und Grenzen. *Z. Für Energiewirtschaft*, **32** (2), 2008, p. 127–138.
- [55] Ketzer, D.: Model-Based Assessment of Biomass with Scenarios for the Odenwaldkreis. 2012.
- [56] Gauder, M. et al.: Identifying the regional straw potential for energetic use on the basis of statistical information. *Biomass Bioenergy*, **35** (5), 2011, p. 1646–1654.
- [57] Walther, R.; Bernath, K. Walker D. (2009): Energieholzpotentiale des Waldes. Studie im Auftrag des Bundesamtes für Umwelt BAFU und des Bundesamtes für Energie BFE. Bundesamt für Umwelt (BAFU) und Bundesamt für Energie (BFE).
- [58] Rettenmaier, N.; Schorb, A.; Köppen, S. (2010): Status of biomass ressource as sessments, version3. IFEU.