

A Constructive Technology Assessment of Stationary Energy Storage Systems

- A prospective Sustainability Analysis with the focus on electrochemical storage systems —

Manuel Baumann

3rd Winter School on Technology Assessment, 10th of December 2012, Lisbon FCT

1. Introduction

- Bachelors degree "European energy economics"
- Masters degree in "Energy and ecologic management"
- since 2012 Research associate at ITAS

Field of work:

- Mobile and stationary electro chemical storage systems
- Description of real condition requirements during operation phase
- Creation of technical and economical scenarios for energy storage systems

1. Introduction: Supervisors

Principle supervisor: Dr.- Ing. Marcel Weil

Second supervisor: Prof. Dr. Antonio Moniz

Me

1. Introduction: Formal frame

- Organisational Structure:
 - Helmholtz project "stationary and mobile electrochemical Energy Storage"
 - Related Institutions wihtin the project: KIT, RWTH Aachen, DLR.....
 - Related Institutions wihtin the Thesis: UNL FCT, KIT-ITAS

Classification

Phd-Thesis

Source: Own figure inspired by Tomic et. al 2005

Problem Definition

Classification

Different possibilities of Energy Storage:

- Mechanical (pumped hydro storage, CAES)
- Electrochemical (batteries...)
- Chemical (hydrogen, wind gas....)
- Thermal (molten salt, ice storage.....)
- Electro static (capacitors, SMES....)

Focus: electrochemical Energy Storage

- Don't require specific geologic and orographic conditions less landscape concerns
- Especially interesting for low to middle voltage areas
-

Problem Definition

Load

lon

Electrochemical Energy Storage Technologies

Electrolyte

Catholyte

V4+/V5+

Tank

Technical Analysis	
- Statistical Automotive Control of the Control of	
Scenario development	

- Example A: Sodium Sulfur Battery
- Already commercially used for Grid applications
- + High energy density
- + Acceptable Efficiency grades (~ 80 %)
- + High cycle stability
- Calendaric life time
- + Good cost performance
- High self discharge grades
- Poor power density
- Thermal management system + insulation

..

Problem Definition

Decision making & Technology development

Own figure inspired by Wang et al. 2009

Problem Definition Classification

- It is insufficient to exclusively look at the operation phase to assess a complex technology (Grunwald et al. 2002)
- Can lead to misleading interpretations which can disregard social or ecological impact factors over the whole life cycle of a technology

Integrated Concept for decision making and technology development

Problem Definition Classification

 Sustainability: a balance of social and economic activities as well as the environment (Wang et al. 2009)

Problem Definition

Classification and aim

Is this a Technology Assessment (TA) Problem?

- TA: "scientific and communicative contribution to solve technological related societal problems" (Grunwald, A. 2002)
- Develop aggregated reports for decision makers about the actual level of knowledge and abilities regarding potential impacts (Grunwald, A. et al. 1999)

Constructive TA*:

- "Constructive" TA is based on a seamless web of related highly heterogenic factors which also underlie dynamic new switch stands (Grunwald, A. et. al 99)
- Expectation of minimizing mismatches, wrong investments, possible social conflicts, and environmental impacts of a new technology in an early development stage (Shot & Rip, 1997)
- Assist rational decision making as well as development in energy system options, planning, management and economy for a sustainable development (Wang et. al, 2009)

*Final classification of the work has to be worked out

The academic question is......

How to evaluate different energy storage technologies in a prospective manner with a full integrated sustainability approach to form a base for decision making?

Source: kommunikationsabc.de

The potential Solution.....

- Economic, tecnological and ecological comparison of (electrochemical)
 Energy storage technologies based on a life cycle sustainability
 Analysis (LCSA) and multi criteria Analysis (or evaluation) (MCA)
- Develop a new LCSA-MCA model through new combined highly interdisciplinary approach

Source: de.colourbox.com

- Definition of the field of technology
- Investigate actual state of development and further development requirements
- Indentify possible bottlenecks

Dipl. Ing. Manuel Baumann

- Investigate future trends
- 5. Identify application fields & market potential
- 6.

Source: mugler.de

- Develope an Energy Storage Technology data base
- Relevant values based on literature and manufactures
- Sources: Scopus, Science Direct, IEEEXplore, Interviews etc.

Technical Analysis

Scenario development

- Definition of different application fields / system integration scenarios
- Identify application fields of different Energy Storage technologies

23

- Based on comprehensive literature research (developed data base)
- Life Cycle Sustainability Assessment (LCSA)

LCSA = LCA + LCC + SLCA

LCSA Life Cycle Sustainability Assessment

LCA Environmental Life Cycle Assessment

LCC LCA-type Life Cycle Costing

SLCA Social Life Cycle Assessment

25

CSA

Economic analysis-LCC

Environmental impact analysis - LCA

Societal impacts SLCA

Ш

Life Cycle Assessment – LCA Life Cycle Costing – LCC

Source: superinvest.de & adpic.de

- Ecologic perspective to assess environmental aspects and potential impacts associated with a product regarding their complete life cycle (cradle-to-grave)
- Choice of right components or entire technologies
- Standardized methodology (ISO 14040)

- Techno-economic perspective to evaluate costs
- Similarity to LCA
- Dynamic investment calculations (Net Present Value method (NPV) Annuity....)

LCSA

Economic analysis-LCC

Environmental impact analysis - LCA

Societal impacts SLCA

29

Economic analysis-LCC

Environmental impact analysis - LCA

Societal impacts SLCA

- Can be very detailed, potentially expensive and time consuming
- Huge amount of Data required (equal production process etc.)
- How reliable is my database and is there even data available?
-

High amount of uncertainties & many assumptions!

Source: freeenterprise.com

- Deterministic methods (LCA+LCC)
 - Different scenarios equal best, worst and base case
 - To show possible spreads of an performance/result and future developments.

- Probalistic methods to ashure determenistic approach
- Monte Carlo Simulation (numerical solution of mathematical problems)
- Create adequate number of simulations

There will be probability Y that the technology C will be "awesome" to "good" regarding performance X (e.g. Results will be mean, median, percentiles ...)

- Again: Adequate amount of data is required
- When there is not enough data, adequate assumptions have to be done
- Command variables, input values and related distribution functions as well as connecting functions have to be known

Rubbish in, rubbish out......

Economic analysis-LCC

Environmental impact analysis - LCA

Societal impacts SLCA

Social Life Cycle Assessment - SLCA

Source: carookee.net

- The societal perspective for e.g. reaction of residents, local added value or contribution to regional development etc. (Zschieschang, 2012)
- Important criteria for peoples acceptance of energy systems (Wang et al, 2009)
 - Base for political, legislative and administrative framework
 - Tendency of institutional actors, policy of public information
- High similarity to LCA (yet some differences)
- Mainly qualitative and only partially quantitative approach possible

35

- There is no really standard to make a SLCA
- SLCA is/was rarelly used for the energy sector
 - Only a few studies (e.g. Gallego et al. 2009 & 2010, Oberschmidt 2010)
- Which impact categories to include in the assessment and how to measure these?
 - Interviews with decision makers and stakeholders?
- How to weight a social criteria?
 - Subjective, objective or combined?
- Perception of social impacts is very variable
 - Equal vaqueness of human feelings and recognitions (Wang et al. 2009)

36

- Difficult approach
- No possibility to cope with uncertainties
- Methodolgy/approach not clear yet
- Develop a complex equation to solve problem:

Engineer + SLCA =

Source: philosophiesofmen.blogspot.com

Economic analysis-LCC

Environmental impact analysis - LCA

Societal impacts SLCA

LCSA - Results?

Results Technology A1 vs. Technology A2 within application X

LCA - Ecology

How compare the alternatives?

- multi-criteria evaluation or analysis (MCA) to consolidate different category dimensions for one evaluation scale
- Suitable to adress complex problems with high uncertainty
- Identify adequate weighting methods
- Identify proper multi-criteria decision analysis or evaluation methods
- What criteria are even relevant from a stakeholders view?
- How aggregate them?

14.12.2012

methods most suitable to solve the problem?

Source: de.123rf.com

- Example for a multi criteria evaluation of different storage technologies
- Equal weight (only techno-economic factors)

Comparison of different battery systems regarding technological aspects, without consideration of a specific application field and weighting system. (Weil, M.; Decker, M.; Fleischer, M.; Frankenberg, A. 2011)

- Technical: usability regarding different application fields
- **Economical (LCC):** Costs of storage in €/kWh
- Environmental (simplified LCA): Env. impact factors
- Societal (SLCA): Impacts on society
- Total (multi-criteria analysis): Evaluation and comparison

Complex, new approach.

Karlsruher Institut für Technologie

"Some" Academic Claims

- ? Will this highly interdisciplinary approach work?
- ? Normativity of chosen criteria (consensus about economic and societal criteria within society)?
- ? Is the approach to complex?
- ? Multi-criteria weighting regarding the relevance?
- ? Is their data available?
- ? How cope with uncertainties?
- ? Trade offs (grade of detail)?
- ! Not enough space.....!

Proposed Timetable

	Year	1st year			2ond year				VE	vear				
No.	Working packages													
1	Collecting of data Development of the model Calculations	X	X		~6									
2	Development of the model		V	tis	U									
3	Calculations		N		٨	X	X	X						
4		WA				X	X	X	X					
5	* 6/1						X	X	X					
6	No.								X	X	X	X	X	X
7									X	X	X	X	X	X
8											X	X	X	X
8	Panic										X	X	X	X

What You Know vs How much you know about it

Muito Obrigado! Perguntas?

Literature

- Gallego Carrera, D.; Mack, A. (2009): Quantification of social indicators for the as-sessment of energy system related effects. In: Stuttgart contributions to risk and sustainability research, 12.
- Gallego Carrera, D.; Mack, A. (2010): Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts. In: Energy Policy, 38 (2), S. 1030-1039.
- J.-J. Wang, Y.-Y. Jing, C.-F. Zhang, and J.-H. Zhao, "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2263–2278, Dec. 2009.
- A. Grunwald, Technikfolgenabschätzung- eine Einführung, Bd. 1. Berlin: Edition Sigma, 2002.
- Hochschorner, E.; Finnveden, G;, "Evaluation of Two Simplified Life Cycle Assessment Methods", International Journal of LCA, Bd. 3, Nr. 8, S. 119–128, 2003.
- J., Oberschmidt, "Multikriterielle Bewertung von Technologien zur Bereitstellung von Strom und Wärme", Universität Göttingen, Göttingen, 2010.
- A. Grunwald, Rationale Technikfolgenbeurteilung: Konzepte und methodische Grundlagen, Bd. 1. Berlin-Heidelberg: Springer, 1999.
- D.; Rastler;, "Electricity Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits", Electric Power Research Institute, California, 2010.
- J. Schot und A. Rip, "The past and future of constructive technology assessment", Technological Forecasting and Social Change, Bd. 54, Nr. 2–3, S. 251–268, Feb. 1997.
- J. K. Musango und A. C. Brent, "A conceptual framework for energy technology sustainability assessment", Energy for Sustainable Development, Bd. 15, Nr. 1, S. 84–91, März 2011.
- Holbach et. al., "Life Cycle Costing in Schifffahrt und Schiffbau (Life Cycle Costing)", 01-Apr-2012. [Online]. Available: http://www.cmt-net.org/index.php?id=226. [Accessed: 25-Juli-2012].
- Norbert Feck, "Monte-Carlo-Simulation bei der Lebenszyklusanalyse eines Hot-Dry-Rock-Heizwerkes", Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, 2007.

