“Stand und Perspektiven der genetischen Diagnostik”

Sachstandsbericht
Inhalt

Zusammenfassung ..5

I. Einleitung ..15

II. Humangenomforschung und neuartige genetische Testmöglichkeiten ...21

1. Zielsetzung, Stand und Perspektiven der Genomforschung ..22
 1.1 Erste Etappe: Die Basissequenz des menschlichen Genoms ... 22
 1.2 Die nächsten Schritte: Das Erfassen der Unterschiede .. 25
 1.3 Nach der Sequenz: Die Funktion der Gene .. 29

2. Neue medizinische Nutzungsmöglichkeiten genetischer Diagnostik ..35
 2.1 Diagnostik multifaktorieller Krankheiten .. 35
 2.2 Pharmako- und Toxikogenomik ... 40
 2.3 Infektions- und Tumor erkrankungen .. 43

III. Humangenetische Beratung, pränatale Diagnostik und Präimplantationsdiagnostik45

1. Humangenetische Beratung und genetische Diagnostik ..46
 1.1 Stand des Angebots genetischer Diagnostik und humangenetischer Beratung 46
 1.2 Zukünftige Verfügbarkeit von Testmöglichkeiten und ihre Probleme .. 52
 1.3 DNA-Chips - einfacher, schneller, billiger ... 56
 1.4 Neue Anbieter ... 59
 1.5 Bevölkerungs-Screening .. 64

2. Pränatale Diagnostik ... 68
 2.1 Stand der Inanspruchnahme ... 68
 2.2 § 218 und Wegfall der embryopathischen Indikation ... 73
 2.3 Zukünftige Entwicklung und gesellschaftliche Diskussion um pränatale Diagnostik und Schwangerschaftsabbruch ... 75
Inhalt

3. Präimplantationsdiagnostik .. 83
 3.1 Verfahren der Präimplantationsdiagnostik .. 84
 3.2 Stand der Anwendung und Diskussion .. 85
 3.2 Präimplantationsdiagnostik und das deutsche Embryonenschutzgesetz 87
4. Regelungsbedarf und Regelungsmöglichkeiten ... 90
 4.1 Standesrechtliche Empfehlungen und Richtlinien und sonstige einschlägige rechtliche Regelungen .. 90
 4.2 Wer darf genetische Tests durchführen? - Arztvorbehalt .. 94
 4.3 Sicherstellung der Qualität von Beratung und Diagnostik .. 95
 4.4 Zulassung genetischer Tests .. 98

IV. Gentests in der Arbeitsmedizin .. 101
 1. Stand und Perspektiven der Nutzung ... 101
 1.1 Bioeffekt-Monitoring und Ex-post-Analysen .. 102
 1.2 Prädiktive Tests auf Dispositionen .. 103
 2. Positionen in der Diskussion ... 107
 3. Regelungsbedarf ... 109
 3.1 Aspekte einer Regelung ... 110
 3.2 Regelungsoptionen im Einzelnen .. 113

V. Gentests in privaten Versicherungen ... 117
 1. Zurückhaltung bei den Versicherern ... 117
 2. Mögliche zukünftige Entwicklung .. 120
 3. Mögliche Folgen einer verbreiteten Nutzung von Gentests .. 123
 4. Regulierungsfragen und -modelle .. 128

VI. Schlussfolgerungen ... 137
 1. Perspektiven prädiktiver genetischer Diagnostik - Fazit .. 137
 2. Gendiagnostikgesetz? ... 140
Inhalt

Literatur ... 153
 1. Im Rahmen des Projektes vergebene Gutachten.. 153
 2. Weitere Literatur .. 153

Anhang .. 161
 1. Tabellenverzeichnis .. 161
 2. Abbildungsverzeichnis .. 161

Glossar .. 163
Zusammenfassung

Stand der Humangenomforschung

Zusammenfassung

Seit einigen Jahren taucht die sog. Pharmako- und Toxikogenomik als vielversprechendes Forschungs- und mögliches medizinisches Anwendungsfeld der Genomforschung in der fachwissenschaftlichen Diskussion auf. Ziel dieses Forschungsfeldes ist die Erfassung genetisch bedingter Unterschiede im Stoffwechsel von Medikamenten und Giftstoffen, um sie für eine Verbesserung von Prävention und Therapie zu nutzen. Die Vision pharmakogenetischer Forschung ist es, nach Analyse von genetisch bedingten Unterschieden in der Abbaufähigkeit oder Reaktion auf chemische Stoffe, Medikamente speziell für bestimmte Patientengruppen zu entwickeln oder aber unter den vorhandenen Medikamenten für jeden einzelnen Patienten die bestmöglichen, also maximal wirksamen, mit minimalen Nebenwirkungen verbundenen Pharmaka auszuwählen. Trotz des insgesamt noch geringen Wissensstandes zeigt die pharma-
Zusammenfassung

zeutische Industrie ein großes Interesse, da in der Pharmakogenomik erhebliche ökonomische Potenziale stecken.

Typisch für jede Form genetischer Diagnostik multifaktorieller Krankheiten bzw. Krankheitsdispositionen ist die begrenzte Aussagekraft, da nur ein erhöhtes Risiko für eine Erkrankung, nicht aber eine sichere Prognose möglich ist. Der Aussagegehalt einer typischen, aus Gentests resultierenden Information, dass nämlich das entsprechende genetische Merkmal bewirkt, dass der Patient bis zu einem bestimmten Alter mit einer bestimmten Wahrscheinlichkeit an der Krankheit x erkranken wird, erscheint zumindest dann sehr problematisch, wenn es keine verlässliche oder verträgliche Behandlungsmöglichkeit gibt.

Zusammenfassung

Humangenetische Beratung und Diagnose

Ob eine **qualifizierte Beratung** in Zukunft zu gewährleisten ist, ist fraglich, wenn sich die Testmöglichkeiten weiter ausweiten und die Tests technisch so einfach und billig werden, dass sie auch von Nichtfachärzten in Zusammenarbeit mit privaten Diagnoselabors durchgeführt werden können. Die technische Voraussetzung ist durch die Entwicklung der DNA-Chip-Technologie gegeben, die potenziell die Durchführung mehrerer hundert genetischer Tests in einem einzigen automatisierten Arbeitsschritt erlaubt. Ob sich genetische Tests als Routine in der allgemeinen ärztlichen (nicht humangenetischen) Praxis etablieren werden, ist angesichts des begrenzten Aussagewertes vieler Tests durchaus fraglich. Die aktuellen Probleme der Testpraxis lassen andererseits aber durchaus befürchten, dass sich eine am Prinzip "Was diagnostiziert werden kann, sollte auch diagnostiziert werden" orientierte Nutzung genetischer Tests etablieren könnte.

Pränataldiagnostik

Dies gilt insbesondere für die vorgeburtliche Diagnose von genetisch bedingten Krankheiten und Behinderungen des Fötus im Rahmen von Schwangerschaftsvorsorgeuntersuchungen. **Die Pränataldiagnostik (PD)** mittels Amniozentese

Präimplantationsdiagnostik

Eine neue Anwendungsmöglichkeit hat sich der genetischen Diagnostik durch die In-vitro-Fertilisation erschlossen. Bei der sog. Präimplantationsdiagnostik (PGD) wird im Rahmen einer künstlichen Befruchtung eine Untersuchung zur Feststellung von genetischen Abweichungen nicht am Fötus in utero, sondern an Eizellen oder an in vitro erzeugten Embryonen im Frühstadium der
Zusammenfassung

Embryonalentwicklung vorgenommen. Embryonen bzw. Eizellen, bei denen das gesuchte genetische Merkmal vorliegt, werden selektiert, und nur solche, die das gesuchte genetische Merkmal nicht aufweisen, werden in den Uterus der Frau transferiert.

Das Verfahren, das mittlerweile weltweit in mehreren hundert Fällen angewandt wurde, hat in Deutschland zu einer Diskussion um das Embryonenschutzgesetz geführt. War die PGD nach einhelliger Meinung bisher durch das Embryonenschutzgesetz verboten, so mehren sich in jüngster Zeit aus der Medizin Stimmen, die entweder die Einschlägigkeit der Bestimmungen des Gesetzes in Zweifel ziehen (womit die PGD erlaubt wäre) oder eine Revision des Gesetzes fordern (um die Durchführung einer PGD in Deutschland zu ermöglichen). Das Verfahren - so die Befürworter der PGD - könne es Eltern, die um ihr genetisches Risiko wissen und (möglicherweise) bereits einen Schwangerschaftsabbruch nach positivem Ergebnis einer Pränataldiagnose haben durchführen lassen, ersparen, einen weiteren Schwangerschaftsabbruch vorzunehmen zu lassen. Kritiker der PGD verweisen auf die Schutzwürdigkeit des Embryos vor jeder Art der Manipulation und sehen in der PGD einen Einstieg in eine selektierende positive Eugenik.

Es muss damit gerechnet werden, dass technische Fortschritte es ermöglichen werden, eine PGD zu einem Zeitpunkt der Entwicklung des Embryos durchzuführen, an dem die Bestimmungen des Embryonenschutzgesetzes nicht mehr greifen. Es wird zu klären sein, ob die Ansprüche von Eltern mit bekanntem Risiko es rechtfertigen, den mit dem Embryonenschutzgesetz intendierten grundsätzlichen Schutz des menschlichen Embryos vor einem "verbrauchenden" Eingriff aufzugeben.

Gentests am Arbeitsplatz

Die Diskussion um den Einsatz genetischer Tests am Arbeitsplatz kreist vor allem um die Gefahr, dass der subjektive Arbeitsschutz, d.h. der Ausschluss von Personen mit genetisch bedingten Überempfindlichkeiten vom Arbeitsplatz,
Zusammenfassung

Vorrang vor dem objektiven Arbeitsschutz, d.h. der Entfernung riskanter Stoffe aus dem Arbeitsprozess, **erhalten könnte**. Die Praxis des sog. Biomonitoring zur frühzeitigen Feststellung eingetretener Schädigungen an riskanten Arbeitsplätzen kann als im Interesse des Arbeitnehmers angezeigt gelten und ist nicht umstritten.

Mit zu erwartenden Fortschritten der toxikologischen und pharmakogenetischen Forschung könnte eine Vielzahl genetisch bedingter Stoffanfälligkeiten prädictiv diagnostizierbar werden, die zumindest potenziell für die Arbeitsmedizin relevant sind. Die heute schon gegebenen Möglichkeiten, genetisch bedingte Unterschiede in der Fähigkeit zum Abbau von Schadstoffen (Enzympolymorphismen) festzustellen, kommen in der Arbeitsmedizin zum größten Teil deshalb nicht zum Einsatz, weil die damit assoziierten Risikoerhöhungen ebenso wie die Zahl der theoretisch Betroffenen klein sind. Es ist nicht auszuschließen, dass sich dies in Zukunft mit neuen Erkenntnissen der toxikologischen Forschung und einer allgemein erweiterten Nutzung der Gendiagnostik in anderen medizinischen Feldern ändern wird.

Zur zentralen Frage einer **vorsorgenden Regelung** könnte dann werden, wie der präventive Nutzen dieser Testtechnologien für den Arbeitsschutz realisiert werden kann, ohne dass sich Befürchtungen hinsichtlich Arbeitnehmerselektion, Diskriminierung und Aushöhlung des objektiven Arbeitsschutzes bewahrheiten.

Gentests bei Versicherungsabschlüssen

Die Nutzung genetischer Diagnostik im Rahmen des Abschlusses von Kranken- und Lebensversicherungen ist seit Jahren immer wieder Gegenstand kontroverser Diskussionen. In der Praxis wurden (und werden) aber Informationen aus gezielt veranlassten genetischen Untersuchungen bei Versicherungsabschlüssen zumindest in Deutschland bisher nicht genutzt.

Unterschiedlich bewertet wird die Frage, inwieweit es für Versicherungsunternehmen sinnvoll sei, Versicherungsprämien unter Berücksichtigung vorliegender genetischer Testergebnisse "je nach genetischem Risiko" eines Versicherungsnehmers differenziert zu gestalten. **Versicherer** führen an, dass eine Differenzierung des Kollektivs der Versicherten in kleine Risikokollektive versicherungsmathematisch keinen Sinn mache und deshalb eine aktive Nutzung genetischer Diagnostik nicht beabsichtigt sei. Sie **behalten sich aber vor, die Offenlegung von Kenntnissen aus genetischen Diagnosen zu verlangen**, wenn sich zeigen sollte, dass Versicherungsnehmer ihr Wissen um ihr eigenes genetisches Risiko nutzen, um hohe Versicherungssummen abzuschließen.
Zusammenfassung

Kritische Stimmen halten dem entgegen, dass es durchaus sinnvoll für Versicherungen sein könnte, ihre Prämien je nach (genetisch bedingtem) Erkrankungsrisiko differenziert zu gestalten, und dass zumindest die Gefahr bestünde, dass Versicherungsnehmer mit vermeintlich hohem Risiko nur zu ungünstigen Bedingungen eine Lebens- oder Krankenversicherung abschließen könnten bzw. von den privaten Krankenkassen in die gesetzlichen Krankenkassen abgedrängt werden.

Regelungsbedarf

I. Einleitung

In den Fokus politischer Aufmerksamkeit ist die Anwendung der Gentechnik am Menschen nun in den letzten Jahren (neben dem Thema der Klonierung) vor allem durch die rapiden Fortschritte des internationalen Projektes zur Aufschlüsselung des menschlichen Genoms geraten, das nach Aussagen der beteiligten

1 Im vorliegenden Bericht bezeichnet der Begriff "genetische Diagnostik" als Sammelbegriff sämtliche (auch klassische) Möglichkeiten der Diagnose genetisch bedingter Krankheiten und Merkmale - also sowohl phänotypische Diagnosen, Chromosomenuntersuchungen und Analysen auf Genproduktebene als auch genetische Tests auf DNA-Ebene. Von "Gendiagnostik" ist dann die Rede, wenn speziell die neuen DNA-analytischen Methoden genetischer Diagnostik gemeint sind. Abweichend hiervon wurde der in der Diskussion übliche Terminus "Gendiagnostikgesetz" als Bezeichnung für eine allgemeine gesetzliche Regelung der Anwendung genetischer Diagnostik (nicht nur von DNA-Diagnostik) übernommen.

Schon seit Ende der 80er Jahre zeichnete sich ab, dass Ergebnisse der Genomforschung eine wachsende Zahl von neuen Diagnosemöglichkeiten in Form so genannter genetischer Tests für die medizinische Praxis verfügbar machen würden. Im Feld der humangenetischen Beratung (insbesondere in der pränatalen Diagnose) wurden gendiagnostische Verfahren für Behinderungen und Erkrankungen, für die Veränderungen der Chromosomen verantwortlich sind, schon zu diesem Zeitpunkt vielfach genutzt. Auch erste genetische Tests, die Mutationen einzelner Gene für monogen bedingte, relativ seltene Erbkrankheiten identifizieren können, fanden Eingang in die humangenetische Beratungspraxis und erweiterten und verbesserten die Diagnosemöglichkeiten. Ratsuchende, denen bisher nur auf der Basis von Familienanamnesen gewonnene Wahrscheinlichkeitsaussagen über ihr persönliches Risiko, Träger der erblichen Anlagen für eine Krankheit zu sein, angeboten werden konnten, eröffnete sich nun z.T. die Möglichkeit, Gewissheit über das Vorliegen bzw. Nicht-Vorliegen der entsprechenden erblichen Anlagen zu erlangen. Von Beginn an wurde diese erwünschte und für die Ratsuchenden hilfreiche Verbesserung der Diagnostik aber auch im Zusammenhang mit neuen Problemen diskutiert, die sich aus den erweiterten gendiagnostischen Möglichkeiten ergeben:

- Genetische Tests auf DNA-Ebene ermöglichen eine prädiktive Diagnostik vor Ausbruch einer Erkrankung, ohne dass therapeutische oder präventive Maßnahmen zur Verfügung stünden. Die Diagnose konfrontiert den Ratsuchenden dann (im Falle monogener Erkrankungen) mit einem genetisch bestimmten Schicksal und kann so eher zur Belastung und nicht zur Hilfe in der eigenen Lebensplanung werden.
- Immer mehr genetische Merkmale können diagnostiziert werden. Dabei droht die Unterscheidung zwischen "krank" und "gesund" unscharf zu werden. Zu fragen ist, welchen Sinn Diagnosen machen, die nicht eine manifeste Erkrankung, sondern lediglich eine Anfälligkeit oder ein Risiko für eine Erkrankung identifizieren.
- In Bezug auf die Nutzung genetischer Tests im Rahmen der pränatalen Diagnose wird die Gefahr gesehen, dass alles, was getestet werden kann (auch
I. Einleitung

I. Einleitung

Im nun vorgelegten Sachstandsbericht wird für die Bereiche humangenetische Beratung und pränatale Diagnostik (ergänzt um die Präimplantationsdiagnostik), für genetische Tests am Arbeitsplatz sowie für den Einsatz genetischer Tests im Rahmen von Versicherungsabschlüssen ein neuerlicher Blick auf die aktuelle Praxis und die mögliche Entwicklung der Nutzung genetischer Diagnostik geworfen.

I. Einleitung

Gültigkeit beanspruchen können - so zur Frage der Erfahrung von Pränataldiagnostik aus der Sicht beratener Frauen -, wird unter Verzicht auf eine erneute ausführliche Behandlung auf die wesentlichen damals erarbeiteten Inhalte rekurriert. Der vorliegende Bericht sollte somit dem Leser einen umfassenden Eindruck über Stand und Problematik des Einsatzes genetischer Tests ermöglichen, ohne Rückgriff auf den 1993 vorgelegten Bericht, der aber bei Bedarf in einzelnen Fragen vertiefende Informationen zur Verfügung stellen kann.2

Im Rahmen des Monitoring-Projektes wurden an folgende Institutionen und Personen Gutachten zu unterschiedlichen, für die Erarbeitung des Sachstandes relevanten Aspekten vergeben: Prof. Dr. Kurt Bayertz, Dr. Johann S. Ach, Rainer Paslack, Argos-Institut für gesellschaftswissenschaftliche Studien, praktische Philosophie und Bildung e.V., Münster; Prof. Dr. Rudi Balling und Dr. Martin Hrabé de Angelis, GSF Neuherberg; Birgit Schulz, Dr. Oliver Pfirrmann, Prognos GmbH, Berlin; Dr. Claudia Stellmach, Bonn; Dr. Ludger Weß, Hamburg; Prof. Dr. Klaus Zerres, Universität Bonn/RWTH Aachen. Der vorliegende Bericht basiert in weiten Teilen auf Aussagen dieser Gutachten. Die Autoren danken den Gutachtern für Ihre Unterstützung; die Verantwortung für die Auswahl und Interpretation der eingearbeiteten Ergebnisse liegt ausschließlich bei den Autoren des vorliegenden Berichtes.

2 Der Bericht ist als Bundestagsdrucksache (Nr. 12/7094) und über den Buchhandel (Hennen et al. 1996) weiterhin verfügbar.
II. Humangenomforschung und neuartige genetische Testmöglichkeiten

Genomforschung kann definiert werden als "Wissenschaft, die die Verknüpfung zwischen Genstruktur und Genwirkung erkundet" (O'Brien et al. 1999). Kernstück der Humangenomforschung war und ist - noch - das Humangenomprojekt (HGP), d.h. die international koordinierte Aufklärung der menschlichen DNA-Struktur, woran sich (seit 1996 mit finanzieller Förderung durch das BMBF) auch deutsche Forschungseinrichtungen beteiligen. Seit einiger Zeit tritt neben die Ermittlung einer "Basis- oder Referenzsequenz" - also der DNA-Bereiche, die bei allen Menschen identisch sind - die Erkundung der variablen Positionen des menschlichen Genoms und vor allem deren funktioneller Bedeutung.

II. Humangenomforschung und neuartige genetische Testmöglichkeiten

1. Zielsetzung, Stand und Perspektiven der Genomforschung

Das primäre Ziel des Humangenomprojektes (HGP) war und ist die En
tschlüsselung der kompletten Sequenz des menschlichen Genoms, das insgesamt
c. 3 Milliarden Basenpaare umfasst, die auf 23 Chromosomenpaaren für etwa
100.000 Gene codieren. Im Dezember 1999 wurde die - zu 97 % vollständige -
Sequenz von Chromosom Nr. 22 (des zweitkleinsten) veröffentlicht (Dunham
et al. 1999), im Mai 2000 die Sequenz von Chromosom Nr. 21 (Hattori et al.
2000). Die prognostizierten Zeitpunkte für die Vervollständigung der mensch-
lichen Gesamtsequenz rückten während der Erstellung des vorliegenden Berichts
immer näher (s.u.). Da der gesamte Forschungsbereich von einer außerordent-
lichen Dynamik geprägt ist, die wiederum von immer neuen methodischen
Sprüngen und teils kurzfristigen ökonomischen Hoffnungen und Triebkräften
beeinflusst wird, müssen die folgenden Aussagen zum Stand der Strukturauf-
klärung (Kap. 1.1 u. 1.2) wie auch die Darstellung der Ansätze zur Funktions-
aufklärung des menschlichen Genoms (Kap. 1.3) mit dem Vorbehalt versehen
werden, u.U. schon in wenigen Monaten nicht mehr aktuell zu sein.

1.1 Erste Etappe: Die Bāsissequenz des menschlichen Genoms

In der Öffentlichkeit am deutlichsten wahrgenommen und oftmals synonym ver-
standen wird die Ermittlung der menschlichen "Basis-" oder "Referenzsequenz"
im Rahmen des HGP. Die untersuchte DNA stammt nicht von einem einzigen
Individuum, sondern von vielen verschiedenen Menschen, die ihr Einverstän-
dnis zur Verwendung ihrer Erbinformation (in anonymisierter Form) gegeben
haben (DFG 1999, S. 9). Der Gesamtumfang der menschlichen DNA bzw. der
verschiedenen Chromosomen ist viel zu groß, um sie mit den vorhandenen
Methoden vom Anfang bis zum Ende "durchsequenzieren" zu können. Daher
basiert die Strategie des Genomprojektes auf der Zerteilung der Gesamt-DNA
in technisch handhabbare Stücke, die - international arbeitsteilig - einzeln unter-
sucht werden. Dabei besteht mit der schwierigste Schritt darin, die erhaltenen
Sequenzen durch Identifizierung ihrer Überlappungsbereiche zu einer Gesamt-
sequenz zusammen zu setzen.

Das "Human Genome Project" wurde 1990 in den USA aus der Taufe gehoben,
nachdem etwa ab 1984 die Notwendigkeit thematisiert worden war, eine syste-
1. Zielsetzung, Stand und Perspektiven der Genomforschung

Firmen wie Incyte Pharmaceuticals und HGS (Human Genome Science) verfolgen genau diese Strategie, alle von ihnen sequenzierten DNA-Bereiche patentieren zu lassen bzw. sie so lange nicht zu veröffentlichen, bis abgeklärt ist, ob die Sequenzen patentaugfähig sind (Ballig/Hrabé de Angelis 1999, S. 13). Ob und in welchem Umfang diese Patente durchgesetzt werden können, wird sich noch zeigen. Weltweit, besonders aber in den USA und in Europa, wird seit Jahren eine hochkontroverse Diskussion zur Frage der gesellschaftlichen, politischen und ökonomischen Bewertung der Patentierung von DNA-Sequenzen geführt, die im Rahmen des vorliegenden Berichts nicht in der nötigen Tiefe behandelt werden konnte.
Vergleichende Sequenzierung - Die Genome anderer Organismen

Es lag also nahe, die Genome vor allem bereits gut charakterisierter Modellorganismen quer durch das Tier-, Einzeller- und Pflanzenreich systematisch in die Bemühungen der Genomforschung mit einzubeziehen. Neben Forschungsvorhaben zur Funktionsaufklärung (Kap. 1.3) wurden an den zumeist weniger komplex aufgebauten Genomen auch sukzessive die Methoden entwickelt und erprobt. Die vergleichende Genomanalyse besonders wichtiger Modellorganismen ist integraler Bestandteil des HGP (Collins et al. 1998), u.a. an Escherichia coli (dem "Standardwerkzeug" der Molekularbiologie, ein menschliches Darmbakterium), der Bäcker- und Bierhefe Saccharomyces cerevisiae, dem Fadenwurm Caenorhabditis elegans, der o.g. Taufliege und derzeit insbesondere der Maus, deren Genomsequenz noch nicht vorliegt und die als Säugetier vor allem für die Erforschung induzierter (d.h. im Labor hervorgerufener) genetischer Krankheitsmodelle von der Wissenschaft genutzt wird (Kap. 1.3). Darüber hinaus ist in den vergangenen Jahren eine ganzen Reihe bakterieller Genome, meist von Krankheitserregern, sequenziert worden.

1.2 Die nächsten Schritte: Das Erfassen der Unterschiede

Das "Referenzgenom" beschreibt idealerweise die gemeinsame genetische Ausstattung der Menschen und ermöglicht einen Vergleich mit dem Genom anderer Organismen. Wissenschaftlich, vor allem aber auch wirtschaftlich weitaus interessanter sind jedoch die genetischen Unterschiede zwischen den Menschen, also die Variation innerhalb des Genoms. In medizinischer und
pharmazeutischer Hinsicht sind vor allem **krankheitsverbundene genetische Varianten** bedeutsam.

Die Erfassung der Genomvarianz in einer Bevölkerung wird auch als "**genetische Epidemiologie**" bezeichnet, die es ermöglichen soll, genetische Merkmale mit Krankheitsgeschehen zu korrelieren, die nur an größeren Gruppen von Menschen beobachtet werden können. Wichtige Fragestellungen sind (Balling/Hrabé de Angelis 1999, S. 29 f.; Kap. 2):

- Welche Rolle spielt die genetische Disposition bei der Entstehung von komplexen Erkrankungen, insbesondere den großen Volkskrankheiten?
1. Zielsetzung, Stand und Perspektiven der Genomforschung

– Warum reagieren verschiedene Patienten unterschiedlich auf dieselben Medikamente? Warum werden bei den einen Nebenwirkungen, bei anderen ein Mangel an Wirksamkeit beobachtet?
– Was ist die genetische Grundlage für die Suszeptibilitäts- und Resistenzphänomene in der Bevölkerung, z.B. gegenüber Umweltschadstoffen?

Projekte der genetischen Epidemiologie

– von Genvarianten (SNPs) überhaupt,
– des Auftretens und der Höhe von Krankheitsrisiken, die mit Genvarianten korreliert werden können,
II. Humangenomforschung und neuartige genetische Testmöglichkeiten

- des Einflusses von Gen-Gen- und Gen-Umwelt-Wechselwirkungen auf mögliche Krankheitsrisiken,
- der Aussagekraft (Validität) - vor allem prädiktiver - genetischer Tests,
- der Verbreitung der Nutzung genetischer Tests bzw. von Beratungseinrichtungen (einschließlich der die Nutzung bestimmenden Einflüsse) sowie
- der Auswirkung der Nutzung genetischer Tests auf Morbidität und Mortalität sowie der Kosten im Gesundheitswesen.

Die Förderung eines 5-Jahres-Projektes zur systematischen Identifizierung abweichender Gene in Krebsgeweben wurde im Herbst 1999 vom Wellcome Trust angekündigt (Dickson 1999), bereits seit 1998 läuft das "Environmental Genome Programme" des US National Institute of Environmental Health, das sich auf umweltinduzierte Tumoren konzentriert (Balling/Hrabé de Angelis 1999, S. 31 f.).

1.3 Nach der Sequenz: Die Funktion der Gene

Expressionsanalyse

Gene sind in unterschiedlichen Zellen äußerst unterschiedlich aktiv, abhängig z.B. vom Entwicklungsstadium, dem jeweiligen Gewebe- bzw. Organtyp oder

Fragestellungen mehr grundlagenwissenschaftlicher Art, z.B. zur Embryonalentwicklung, werden - aus naheliegenden ethischen Gründen - vorrangig an Modellorganismen untersucht. Wie bei der Genomsequenzierung werden auch bei der Untersuchung der Expressionsmuster große wissenschaftliche Erwartungen in die vergleichende Analyse, v.a. bei Wirbeltieren, gesetzt (Balling/Hrabé de Angelis 1999, S. 16 f.).

Mutagenese-Ansätze

1. Zielsetzung, Stand und Perspektiven der Genomforschung

zinischen, sondern primär auf grundlegend biologischen Erkenntnisgewinn ausgerichtet sind Mutagenese-Projekte bei anderen Modellorganismen der Genomforschung (Zebrafisch, Taufliege, Fadenwurm, Hefe etc.), deren Haltung im Labor einfacher ist, bei denen mehr Varianten in kürzerer Zeit erzeugt und untersucht werden können oder deren Genom einen weitaus geringeren Komplexitätsgrad aufweist, wodurch eine Funktionsanalyse erleichtert wird.

Automatisierung der Genanalyse: Die DNA-Chip-Technologie

Die Potenziale einer Verbindung von Informations- und Biotechnologie beflügeln die Phantasien von Forschern wie Ökonomen seit längerem. Doch nicht um die Vision eines Biochips, der biologische Strukturen oder Moleküle als Funktionsprinzip anstelle anorganischer Materialien benutzen soll, geht die Diskussion derzeit vor allem, sondern um die sog. DNA-Chips. Sie dienen nicht der Datenverarbeitung, sondern vielmehr der Datengenerierung. Mit ihrer Hilfe soll es u.a. möglich werden, in bislang unerreichter Geschwindigkeit und Einfachheit detailliert genetische Dispositionen zu ermitteln, Krebserkrankungen frühzeitig zu erkennen und deren Therapieverlauf zu kontrollieren, Infektionen weitaus differenzierter als bislang zu diagnostizieren und ihre Verbreitungswege nachzuvollziehen oder Lebensmittel auf bakterielle oder virale Verunreinigungen zu testen (Kap. II.2 und III.1).

Die Zahl der DNA-Sonden je Chip und damit der möglichen Analyseparameter, die bei einem Durchgang erfasst werden können, geht in die Hunderttausende (Weß 1998).
II. Humangenomforschung und neuartige genetische Testmöglichkeiten

Ob die weitere Entwicklung der DNA-Chip-Technologie eines Tages tatsächlich dazu führt, dass der Einsatz von Gendiagnostik mit DNA-Chips in Krankenhäusern, Arztpraxen oder gar Apotheken zu einer selbstverständlichen Routine wird, kann derzeit sicher nicht serios prognostiziert, angesichts der technologischen Dynamik allerdings ebenso wenig sicher ausgeschlossen werden.

Proteomik, Strukturelle Genomik und Epigenomik

Unter Proteom wird die **Gesamtheit der verschiedenen Proteine** in einem biologischen System verstanden. Proteine können vereinfacht als die eigentlichen aktiven Biomoleküle bezeichnet werden, die z.B. in Form von Enzymen den Stoffwechsel einer Zelle steuern, als Rezeptoren (v.a. chemische) Signale von
1. Zielsetzung, Stand und Perspektiven der Genomforschung

außerhalb der Zelle empfangen und in der Zelle weiterleiten oder maßgeblich die "architektonische" Struktur einzelner Zellen wie von Geweben und Organen bestimmen. Auch die meisten Pharmaka wirken, indem sie die Aktivität von Proteinen beeinflussen.

Einen spezifischen Ansatz der Proteomik stellt die sog. strukturelle Genomik dar. Die biowissenschaftlichen Disziplinen sind nach wie vor nicht in der Lage, aus der sog. Primärsequenz, also der Aminosäuresequenz (die wiederum durch die zugrunde liegende DNA-Sequenz determiniert wird), die räumliche Struktur eines Proteins verlässlich vorherzusagen, die für die biologische Wirksamkeit des Proteins jedoch von entscheidender Bedeutung ist. Im Laufe der nächsten Jahre soll auf diesem Gebiet durch ein systematisches Großprojekt zur Analyse von wenigstens 10.000 Proteinstrukturen mit neuesten Methoden der Röntgenstruktur- und der Kernspinresonanz-Analyse ein entscheidender Durchbruch erzielt werden (Gaasterland 1998; Wadman 1999).

In jüngster Zeit vermehrt diskutiert werden Begriff und Ansatz der Epigenomik oder Epigenetik, die sich systematisch mit biologischen Phänomenen beschäftigt, die nicht allein durch die Primärstruktur und -sequenz der DNA bestimmt werden, sondern z.B. durch natürlich auftretende Modifikationen der DNA-Bausteine, durch strukturelle Wechselwirkungen der DNA mit anderen Molekülen (die die räumliche Gestalt der DNA und darüber die Aktivität der Gene steuern) oder überhaupt durch komplexere biologische Informationsvorgänge oberhalb der Stufe einzelner Gene, Proteine oder auch Zellen (Strohman 1999). Ein systematischer Ansatz betrifft v.a. die Analyse spezieller, fakultativ vererbbarer Modifikationen der DNA, sog. Methylierungen (Beck

Zur zukünftigen Entwicklung

2. Neue medizinische Nutzungsmöglichkeiten genetischer Diagnostik

Die geschilderten Fortschritte bei der Sequenzierung des menschlichen Genoms und die Orientierung hin zur Funktionsaufklärung haben neue Perspektiven und Möglichkeiten für den Einsatz genetischer Diagnostik in der Medizin eröffnet. Drei Trends sind besonders wichtig:

- die **Diagnose disponierender genetischer Faktoren für multifaktorielle Krankheiten** jenseits "klassischer" Kontexte der Humangenetik, wie z.B. der Pränataldiagnostik,
- die sog. **Pharmako- und Toxikogenomik**, die genetisch bedingte Unterschiede im Stoffwechsel von Medikamenten und Giftstoffen erfassen und für eine Verbesserung von Prävention und Therapie nutzen will, und
- diagnostische Fortschritte bei **Infektions- und Tumorerkrankungen**, die bereits von großer praktischer Bedeutung sind.

Ein bislang eher hypothetisches, möglicherweise aber zukünftig relevantes Anwendungsfeld ist die Diagnostik **nicht-krankheitsbezogener Merkmale**. Vor allem in den Medien wird immer wieder aus den USA berichtet, dass eine genetische Testung von Eispendedezellen auf "ideale" körperliche und psychische Merkmale kurz bevor stünde oder gar schon durchgeführt würde. Konkrete Erkenntnisse hierzu liegen bislang nicht vor, doch erscheint ein solches Szenario angesichts der gesellschaftlichen Akzeptanz nahezu jeglicher Form künstlicher Befruchtungsmethoden einschließlich verbundener Selektionsverfahren in den USA durchaus realistisch (s. Kap. III.3.2 zum Stand der Anwendung der Präimplantationsdiagnostik), auch wenn derartige "ideale" genetische Eigenschaften prinzipiell niemals seriös und sinnvoll ermittelt und benannt werden können.

2.1 Diagnostik multifaktorieller Krankheiten

Unter multifaktoriellen Krankheiten werden solche verstanden, vor deren Entstehung mehrere Bedingungen erfüllt sein müssen. Meist wird mit diesem Begriff auf ein Zusammenspiel von genetischer Anlage und Umwelteinflüssen verwiesen, im Unterschied z.B. zum Begriff der polygenen Erkrankungen, an deren Entstehung mehrere Gene beteiligt sind. Streng genommen sind praktisch alle Erkrankungen multifaktoriell, auch die monogenen oder z.B. eindeutige
II. Humangenomforschung und neuartige genetische Testmöglichkeiten

Während im Fall des Brustkrebses also die Radikalität der "präventiven" Maßnahme ein Hauptproblem darstellt und den Sinn der genetischen Testung infrage stellt, ist es im Fall der ApoE-Varianten (als Indikatoren für eine Alzheimer-Erkrankung) das Fehlen praktisch jeglicher Handlungsoptionen.

Die neurodegenerative Alzheimerische Krankheit repräsentiert gut die Hälfte aller Demenzerkrankungen. Circa 5% der Menschen über 65 Jahre sind von ihr betroffen. Genetische Anlagen spielen eine wichtige Rolle, doch wur-
II. Humangenomforschung und neuartige genetische Testmöglichkeiten

Beiden Beispielen gemein und typisch für jede Form genetischer Diagnostik multifaktorieller Krankheiten bzw. Krankheitsdispositionen ist die begrenzte Aussagekraft, deren Bedeutung sich Laien prinzipiell (und hierzu müssen realistischerweise auch Ärzte ohne Zusatzausbildung gerechnet werden) kaum erschließt. Der Aussagegehalt einer typischen, aus Gentests resultierenden Information, dass nämlich das entsprechende genetische Merkmal bewirkt, dass
der Patient bis zu einem bestimmten Alter mit einer bestimmten Wahrscheinlichkeit an der Krankheit xy erkranken wird (anders formuliert: dass seine Erkrankungswahrscheinlichkeit um den Faktor X gegenüber der Durchschnittsbevölkerung erhöht ist), erscheint zumindest dann sehr problematisch, wenn es keine verlässliche oder verträgliche Behandlungsmöglichkeit gibt. "Eine verständliche Vermittlung dieser Sachverhalte ist selbst für den erfahrenen genetischen Berater sehr schwer, wenn überhaupt noch möglich" (Zerres 2000).

Die Meldung, dass 1998 an der Universität Essen 500 Personen einen Gen- test aufDisposition für Bluthochdruck haben durchführen lassen, nachdem das Institut für Pharmakologie bekannt gegeben hatte, mittels Gentest ein 1,8-fach erhöhtes Risiko feststellen zu können (Ärztezeitung 1999), illustriert die Fragwürdigkeit prädiktiver genetischer Diagnostik bei multifaktoriellen Krankheiten besonders deutlich: Bluthochdruck wird im Rahmen ärztlicher Untersuchungen oder gar in der Apotheke routinemäßig gemessen, präventiv wird unspezifisch durch "gesunde Lebensführung" vorgebeugt, medikamentös behandelt wird er gegebenenfalls nach Entstehen. Das Wissen um diese genetische Disposition ist für die Betroffenen eigentlich völlig sinnlos, da es zu keinerlei Verhaltensänderung führen kann.

Insgesamt müssen nach derzeitigem Wissensstand genetische Tests für multifaktorielle Erkrankungen prinziell als medizinisch problematisch bezeichnet werden, solange es keine präventiven oder therapeutischen Handlungsmöglichkeiten gibt. Eine mögliche Beruhigung der Patienten ("Alles im Normalbereich!") mag im Einzelfall psychologisch und damit medizinisch sinnvoll sein, rational betrachtet stellt sie jedoch keinen seriösen Zweck dar, solange eine
II. Humangenomforschung und neuartige genetische Testmöglichkeiten

Risikoerhöhung aufgrund anderer - unbekannter oder nicht zu testender - Faktoren im Verborgenen bleibt.

Eine zukünftige Ausweitung genetischer Tests auf (multifaktorielle) Krankheitsdispositionen ist jedoch trotz allem nicht unwahrscheinlich. Zum einen werden im Lauf der kommenden Jahre vermutlich zunehmend sinnvoll testbare, d.h. präventiv behandelbare, Dispositionen erforscht werden. Zum anderen muss realistischerweise damit gerechnet werden, dass sich auch weitgehend sinnlose Tests etablieren können - entsprechend den Erfahrungen aus der Vergangenheit, dass viele Diagnose- und Therapieverfahren angewendet (und auch von den Krankenkassen finanziert) werden, deren Sinn und Zweck nie wissenschaftlich einleuchtend begründet oder gar evaluiert worden ist (was wiederum besonders augenfällig dadurch gezeigt wird, dass das medizinische Angebot selbst zwischen benachbarten Ländern wie Deutschland und Frankreich ein sehr unterschiedliches ist). Die Sorge, dass genetische Tests "auch dann angeboten und durchgeführt werden, wenn dafür keine ärztliche Veranlassung besteht", wird u.a. auch von der Deutschen Forschungsgemeinschaft geteilt (DFG 1999, S. 15). Neben der Ärzteschaft sind vor allem auch die Krankenkassen gefordert, die bei der Übernahme gendiagnostischer Untersuchungen in ihre Leistungskataloge eine besondere Sorgfalt walten lassen sollten.

2.2 Pharmako- und Toxikogenomik

2. Neue medizinische Nutzungsmöglichkeiten genetischer Diagnostik

Dass es sog. "langsame" und "schnelle Acetylierer" gibt, die Giftstoffe schlechter oder besser abbauen können, ist seit langem bekannt und spielt u.a. in der Arbeitsmedizin eine gewisse Rolle (Kap. IV), da langsamer Acetylierer bei der Exposition gegenüber aromatischen Aminen ein stark erhöhtes Risiko für die Entwicklung von Harnblasenkrebs aufweisen (Argos 1999, S. 197 ff.). Auch im Bereich der Umweltmedizin wird individuellen Empfindlichkeitsunterschieden zunehmend Aufmerksamkeit entgegengebracht, die z.B. als Ursache des Krankheitssyndroms "Multiple Chemikalien-Überempfindlichkeit" (MCS) diskutiert werden.

Trotz des insgesamt noch geringen Wissensstandes zeigt die pharmazeutische Industrie ein großes Interesse an der Pharmakogenomik, da in ihr aus verschiedenen Gründen große ökonomische Potenziale stecken (Argos 1999, S. 82 f.; Prognos 2000):
II. Humangenomforschung und neuartige genetische Testmöglichkeiten

- Teilweise extrem teure Fehlschläge bei der Medikamentenentwicklung in der klinischen Prüfungsphase III könnten vorhergesehen und damit vermieden werden.
- Bei einer früheren klinischen Prüfung durchgefallene Medikamente könnten "gerettet" werden, wenn ihre Eignung für bestimmte Patienten pharmakogenetisch nachgewiesen wurde.
- Eventuell könnten "alte", patentrechtsfreie Medikamente mit einer pharmakogenetisch spezifizierten, spezialisierten Wirkungsbeschreibung "wiederbelebt" werden.

Eher unreflektiert wirkt die häufig vorgenommene argumentative Verquickung des - engeren - Themas Pharmakogenomik mit den o.g. SNP-Projekten (Kap. II.1.2) zur Ermittlung der genetischen Varianz beim Menschen, wenn suggeriert wird, dass Erkenntnisse über einen kausalen Zusammenhang zwischen genetischer Variation und Krankheitsgeschehen quasi zwangsläufig in die Entwicklung spezifischer Behandlungsmethoden führen müssten. Wie viele medizinisch relevante Ergebnisse überhaupt aus den vor kurzem erst begonnenen SNP-Projekten resultieren werden, bleibt abzuwarten; ob auf dieser Grundlage dann neue, pharmakogenetisch angepasste Medikamente entwickelt werden können, ist folglich hochgradig unsicher.
2. Neue medizinische Nutzungsmöglichkeiten genetischer Diagnostik

2.3 Infektions- und Tumor erkrankungen

III. Humangenetische Beratung, pränatale Diagnostik und Präimplantationsdiagnostik

Abb. 1: Zahl der Einträge in Mendelian Inheritance in Man (McKusick Katalog)

1. Humangenetische Beratung und genetische Diagnostik

1.1 Stand des Angebots genetischer Diagnostik und humangenetischer Beratung

Genetische Tests und Beratung werden Rat suchenden Erwachsenen, die für sich selbst ein genetisch bedingtes Erkrankungsrisiko vermuten, oder Eltern mit Kinderwunsch, die befürchten, ein genetisches Risiko auf ihre Kinder zu übertragen, angeboten. Den größten Teil genetischer Beratung und Diagnose macht die pränatale Diagnostik im Rahmen der Schwangerschaftsvorsorge aus, um genetisch bedingte Erkrankungen des Fötus festzustellen.

die genetische Diagnostik erhalten kann, und wegen der teils schwierigen Inter-
pretation von Testergebnissen und ihrer Bedeutung für den Klienten wird von
den Fachgesellschaften **eine ausführliche Beratung vor der Durchführung des Tests sowie nach Vorliegen des Testergebnisses als unabdingbare Voraussetzung für die Durchführung genetischer Diagnostik angesehen.**

Anbieter

Die humangenetische Beratung wurde in Deutschland lange Zeit ausschließlich an humangenetischen Instituten der Universitäten durchgeführt. Der Berufsverband Medizinische Genetik wie auch die Deutsche Gesellschaft für Human-
genetik haben sich mit dem Argument, ein ausreichendes und qualifiziertes Angebot genetischer Diagnostik und Beratung angesichts wachsender Test-
möglichkeiten und wachsender Nachfrage sicherzustellen, für die Einführung eines Facharztes für Humangenetik eingesetzt. Seit 1993 ist es möglich, eine entsprechende Qualifikation zu erwerben und sich als Facharzt für Humangenetik niederzulassen.

Humangenetische Dienstleistungen - pränatale Diagnostik, prädiktive Diag-
nostik bei Erwachsenen und genetische Beratung - werden zunehmend von **niedergelassenen Ärzten** erbracht. Laut Nippert et al. (1997, S. 198) erbrachten 1995 niedergelassene Ärzte mit der Gebietsbezeichnung **Facharzt für Human-
genetik** rund 47 % der gesamten Versorgung mit spezialisierten genetischen Dienstleistungen in Deutschland. Nach Angaben der Bundesärztekammer gab es

Tab. 1: Humangenetische Leistungen in Westdeutschland (ab 1995 inkl. Ost-Berlin)

<table>
<thead>
<tr>
<th>Dienstleistungen</th>
<th>Jahre</th>
<th>Zahl der Leistungen</th>
<th>Anteil niedergel. an allen Ärzten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>alle Leistungserbringer</td>
<td>niedergelassene Ärzte</td>
</tr>
<tr>
<td>Amniozentese o. Chorionbiopsie (GO-Ziffer 115)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>42.745</td>
<td>23.957</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>49.233</td>
<td>30.666</td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>56.598</td>
<td>36.778</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>58.499</td>
<td>40.797</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>61.794</td>
<td>44.374</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>68.267</td>
<td>52.386</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromosomen aus Blutuntersuchungen (GO-Ziffer 4872/4972)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>12.981</td>
<td>4.093</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>13.385</td>
<td>5.471</td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>14.583</td>
<td>6.150</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>16.317</td>
<td>8.343</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>27.601</td>
<td>19.076</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>30.786</td>
<td>20.447</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetische Beratung (GO-Ziffer 173)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>21.830</td>
<td>5.985</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>24.172</td>
<td>9.519</td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>26.872</td>
<td>12.845</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>29.226</td>
<td>17.804</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>32.777</td>
<td>19.094</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>40.561</td>
<td>25.910</td>
</tr>
</tbody>
</table>

III. Humangenetische Beratung, pränatale Diagnostik...

Abb. 2: Zugehörigkeit genetischer Beratungsstellen in Deutschland

Quelle: Medizinische Genetik 1997, nach Zerres 1999

Inanspruchnahme genetischer Diagnostik

Die jüngste, 1999 durchgeführte Erhebung des Berufsverbandes Medizinische Genetik zur molekulargenetischen Diagnostik, die 104 Labore erfasste, ergab, dass von diesen 104 Anbietern neben den bereits seit Jahren gängigen Untersuchungen auf Chromosomenebene insbesondere im Rahmen der pränatalen Diagnostik (Trisomie 21, Neuralrohrdefekte) zurzeit in Deutschland, der Schweiz und Österreich Tests für rund 300 krankheitsbedingende Genorte und chromosomal bedingte Erkrankungen durchgeführt werden (Medizinische Genetik 1999). Noch 1993 erbrachte die Erhebung des Berufsverbandes, dass von den in Deutschland, Österreich und der Schweiz damals tätigen 62 Laboren Tests auf 64 genetisch bedingte Krankheitsmerkmale durchgeführt wurden (Schmidtke 1993). In der Tat hat sich also die Ausweitung des Testangebotes in den letzten Jahren enorm beschleunigt.

Hierbei hat nicht nur die Zahl der Krankheiten zugenommen, für die ein Test verfügbar ist. Auch hat eine Differenzierung von Krankheitsbildern durch
1. Humangenetische Beratung und genetische Diagnostik

Genetische Beratung

Von den Fachgesellschaften (national wie international) wird eine ausführliche genetische Beratung vor und nach der Durchführung einer genetischen Diagnostik als unerlässlicher Bestandteil humangenetischer Dienstleistungen angesehen. Eine solche Beratung soll über das zu untersuchende Krankheitsbild, die Aussagekraft genetischer Tests, die Risiken der Durchführung der Diagnostik (z.B. der Fruchtwasserentnahme im Rahmen der Pränataldiagnostik) sowie die vorhandenen (oder nicht vorhandenen) medizinischen Interventionsmöglichkeiten bei positivem Testergebnis aufklären und auch psychosoziale Unterstützung in einer oft schwierigen Entscheidungssituation bieten. Sichergestellt werden soll durch eine umfassende Beratung, dass der/die Beratene aufgeklärt und frei nach seinen Interessen und Wertgesichtspunkten über die Durchführung eines Tests und über die Konsequenzen nach positivem Testergebnis entscheiden kann.

Schon seit längerem wird von Humangenetikern darauf hingewiesen, dass das Beratungsangebot mit der Zahl der durchgeführten Diagnosen nicht Schritt hält und die Durchführung der Beratung oft nicht den von den Fachgesellschaften festgelegten Standards entspricht. Legt man die Abrechnungsziffern der Krankenkassen zugrunde zeigt sich, dass in den letzten Jahren
III. Humangenetische Beratung, pränatale Diagnostik ...

die Zahl der abgerechneten genetischen Beratungen zwar ständig zugenommen hat. Aber auch 1997 (Tab. 1) fanden wie schon 1991 rund 40% aller genetischen Diagnosen (das waren 1997 rund 58.000) ohne genetische Beratung statt. Besonders krass ist nach Aussage von Humangenetikern dieses Missverhältnis im Bereich der Pränataldiagnostik (Kap. 2.1). Zu berücksichtigen ist auch, dass die Zahl der abgerechneten genetischen Beratungen nichts über die Qualität und die Dauer der genetischen Beratung aussagt (Zerres 1999).

1.2 Zukünftige Verfügbarkeit von Testmöglichkeiten und ihre Probleme

1. Humangenetische Beratung und genetische Diagnostik

wiegend noch von der Diagnostik seltener Erbkrankheiten bestimmten hinausgeht.

Mit prädiktiven Tests für multifaktoriell bedingte Erkrankungen (Kap. II. 2.1) ist das Problem verbunden, dass

- sie lediglich ein (teils erheblich, teils nur gering) erhöhtes Erkrankungsrisiko angeben können, also keine individuelle Aussage über den Ausbruch der Krankheit oder auch die Schwere der Erkrankung geben,
- für die meisten testbaren, multifaktoriell bedingten Erkrankungen zumindest zurzeit keine wirksamen Möglichkeiten der Prävention oder Therapie zur Verfügung stehen.

Schlüssige Hinweise darauf, dass sich, ähnlich wie in den USA in Ansätzen erkennbar, ein kommerzieller Markt für genetische Tests etabliert - wie im

Es ist daher nicht auszuschließen, dass dann, wenn präventive Maßnahmen angeboten werden können, prädictive genetische Tests, auch wenn sie nur Wahrscheinlichkeitsaussagen ermöglichen, auf eine entsprechende Nachfrage treffen werden. Die gesundheitspolitisch propagierte Idee der individuellen Vorsorge zur Vermeidung von Erkrankung und Behandlungskosten könnte hierbei eine unterstützende Rolle spielen, zumal wenn mit der Inanspruchnahme von Vorsorgeuntersuchungen im Gesundheitssystem entsprechende finanzielle Anreize verbunden wären.

Dann, wenn sich mit dem Testergebnis eine konkrete Möglichkeit der Prävention ergibt, mag ein Test, auch wenn er nur auf ein geringfügig statistisch erhöhtes Risiko verweist, als medizinisch sinnvoll erscheinen. Für viele multifaktoriell bedingte Erkrankungen wird dies, wie z.B. für die genetische prädictive Krebsdiagnostik, für die man zurzeit die meisten Fortschritte erwartet, wahrscheinlich in den meisten Fällen zunächst nicht gegeben sein. Grundsätzlich könnten Fortschritte in der prädictiven Diagnostik multifaktoriell bedingter Erkrankungen in Zukunft vermehrt Fragen in der medizinischen Praxis aufwerfen, wie sie Passarge (1998, S. 249) für die genetische Tumordiagnostik stellt: "Wann ist ein genetischer Test für eine Tumorprädisposition gerechtfertigt,

Wie auch immer die medizinischen und ethischen Aspekte einer Nutzung prädiktiver Diagnostik im Einzelnen zu bewerten sind, die prädiktive genetische Diagnostik lässt wegen der Schwierigkeit der Interpretation der Testergebnisse und der psychischen Belastung des Patienten eine umfassende Beratung vor und nach der Diagnose als unabdingbar erscheinen. Hier könnte sich in Zukunft ein erhebliches Problem ergeben, wenn die technische Vereinfachung der entsprechenden Tests es auch nicht spezialisierten Medizinern ermöglicht, solche Tests durchzuführen.

1.3 DNA-Chips - einfacher, schneller, billiger

und nicht irgendetwas anderes noch. Das wäre weder vom Material noch vom Arbeitsaufwand noch sonst wie möglich und sinnvoll."

In einem solchen Szenario wäre genetische Diagnostik sozusagen über die Grenzen der humangenetischen Institute und Facharztpraxen hinaus weitgehend
III. Humangenetische Beratung, pränatale Diagnostik ...

zur Routine ärztlicher Praxis geworden. Dies würde, abgesehen von der Lösung noch bestehender technischer Probleme, voraussetzen, dass die entsprechenden Tests über die gesetzlichen und privaten Krankenkassen abgerechnet werden können und die entsprechenden Testergebnisse aus ärztlicher Sicht mit einem plausiblen Nutzen für den Patienten verbunden sind, der in der Regel in einem positiven Interventionsangebot (Präventionsmöglichkeit, Therapieangebot) bestehen wird.

1.4 Neue Anbieter

In naher Zukunft wird für den Allgemeinmediziner der DNA-Chip sicherlich noch keine Option darstellen, während dies für Fachärzte und Labors schon eher als wahrscheinlich gelten kann und auch bei zunächst noch hohem Kostenaufwand interessant sein könnte. Insbesondere niedergelassene Großlabore könnten in der Zukunft eine Vorreiterrolle als Anbieter eines breiten Spektrums genetischer Diagnostik spielen, weil sie universitären Anbietern (d.h. den klassischen humangenetischen Instituten) gegenüber in Bezug auf die finanziellen Möglichkeiten einer Einführung neuer Technologien (DNA-Chip) sowie in Bezug auf Preisangebot, Schnelligkeit und Spezialisierung im Vorteil sind (Rieß 1997, S. 40). Großlabore wie die Praxisgemeinschaft Leidenberger, Weise, Breusstedt, Schulte und Partner GbR in Hamburg können niedergelassenen Ärzten "ausschließlich auf Überweisungsauftrag" (Anabasis 1998) eine ganze Palette an molekularer Diagnostik anbieten (Tab. 2).

III. Humangenetische Beratung, pränatale Diagnostik...

Tab. 2: Angebot Molekulare Diagnostik der Praxisgemeinschaft Leidenberger, Weise, Breustedt, Schulte & Partner GbR, Hamburg

<table>
<thead>
<tr>
<th>Molekularbiologische Diagnostik</th>
<th>Neurologische Erkrankungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endokrinopathien und Stoffwechsel-erkrankungen</td>
<td>Frigiles-X-Syndrom</td>
</tr>
<tr>
<td>Adrenogenitales Syndrom</td>
<td>Kearns-Sayre-Syndrom</td>
</tr>
<tr>
<td>Alpha1-Antitrypsinmangel (AAT)</td>
<td>Lebersche hereditäre Opticus Neuropathie</td>
</tr>
<tr>
<td>Angiotensin-Converting Enzym (ACE)</td>
<td>Mitochondriale Encephalomyopathie, Laktat-Azidose, stroke-like-episodes</td>
</tr>
<tr>
<td>Apolipoprotein AI/CIII</td>
<td>Muskeldystrophie</td>
</tr>
<tr>
<td>Apolipoprotein B</td>
<td>Myoklon Anfälle und ragged-red muscle fibers</td>
</tr>
<tr>
<td>Apolipoprotein E</td>
<td>Myotone Dystrophie</td>
</tr>
<tr>
<td>Azoospermiefaktor</td>
<td></td>
</tr>
<tr>
<td>Carnitin-Palmityl-Transferase-II-Mangel</td>
<td></td>
</tr>
<tr>
<td>Zystische Fibrose (Mukoviszidose)</td>
<td></td>
</tr>
<tr>
<td>Familiäre Schilddrüsenhormon-Resistenz</td>
<td></td>
</tr>
<tr>
<td>Genetische Prädisposition für</td>
<td></td>
</tr>
<tr>
<td>Osteoporose</td>
<td></td>
</tr>
<tr>
<td>Hereditäre Hämochromatose</td>
<td></td>
</tr>
<tr>
<td>Low-density-Lipoprotein-Rezeptor</td>
<td></td>
</tr>
<tr>
<td>MODY-Typ I, II und III</td>
<td></td>
</tr>
<tr>
<td>Sichelzellenanämie und β-Thalassämie</td>
<td></td>
</tr>
</tbody>
</table>

Störungen der Blutgerinnung	**Tumordiagnostik**
Hämophilie A | Akute lymphatische Leukämie |
Hämophilie B | Chronisch myeloische Leukämie |
Methylen tetrahydrofolat-Reduktase | Follikuläres Lymphom |
Protein-C-Mangel | Multiple Endokrine Neoplasie Typ 1 |
Prothrombin-Gen | Multiple Endokrine Neoplasie Typ 2 |
Resistenz gegen aktivierte Protein C | Prä-B-Zell-akute lymphatische Leukämie |
Von-Hippel-Lindau-Syndrom |

Quelle: Anabasis 1998, nach Argos 1999
1. Humangenetische Beratung und genetische Diagnostik

Gentest per Zeitungsannonce?

Für Aufsehen bei Ärztkammern und Behörden sorgte eine Anzeige, die 1999 im Kölner Stadtanzeiger erschienen ist. Eine Firma DiaGen bietet hier eine ganze Reihe von genetischen Tests für Krankheitsdispositionen an. In einer Informationsbroschüre für an einem Test interessierte Personen wirbt die Firma damit, dass die von ihr angebotenen Gentests "bisher in der Bundesrepublik in Form freiwilliger Frühdiagnose von Gesundheitsrisiken nicht angeboten" werden und dass "aus ärztlicher Sicht [...] die molekularbiologische Diagnostik ein zeitgerechtes Mittel der Frühdiagnose eines möglichen Leidens [ist], welches durch frühzeitige Erkennung und Vorbeugung eine anhaltende Lebensqualität sichern und lebensverlängernd sein kann."

Das Angebot ergeht unspezifisch an "Interessierte" und nicht gezielt an Risikogruppen. Das Unternehmen bietet den Besuch eines Arztes zu Hause an, um eine individuelle Beratung vorzunehmen und "nach Beauftragung" die nötige Testmenge Blut abzunehmen, die zur Diagnose an Fachlabore im In- und Ausland verschickt wird. Die Testergebnisse werden auf Wunsch direkt an die getestete Person oder an den Hausarzt verschickt oder von einem Arzt des Unternehmens persönlich übergeben.

Eine von der Ärztekammer Nordrhein veranlasste Untersuchung des Unternehmens ergab, dass nach gegebener Rechtslage einzig die in der Anzeige enthaltene Werbung für Krebsdiagnostik zu beanstanden war.

Die als Spin-off des Fraunhofer Instituts für Grenzflächen und Bioverfahrenstechnik, Stuttgart, in Kooperation mit dem Institut für Mikrobiologie, Universität Hannover, 1997 gegründete Firma Adnagen Genetic Testing Services in Hannover strebt an, "das weltweit führende Unternehmen in der Erforschung
1. Humangenetische Beratung und genetische Diagnostik

und Diagnostik von medizinisch relevanten Polymorphismen" im Bereich schadstoffabbauende Enzyme zu werden (Selbstdarstellung; s. Kasten).

Selbstdarstellung der Firma Adnagen

Quelle: http://www.adnagen.com/

Ein solches aktives kommerzielles Direktangebot an Patienten unterläge natürlich nicht im gleichen Maße, wie dies an universitären Instituten oder auch bei Fachärzten der Fall ist, standesrechtlichen und fachgesellschaftlichen Richtlinien und Kontrollen. Andererseits wird man davon ausgehen können, dass auch neue Anbieter genetischer Diagnostik sich nicht vollkommen vom etablierten Gesundheitssystem abkoppeln werden - zum einen wegen der möglichen Kostenübernahme durch die Krankenkassen, zum anderen wegen des Zugangs zu einer interessierten Klientel, der wahrscheinlich immer noch vorwiegend über den behandelnden Arzt gewährleistet sein wird. Auch aus den USA wird berichtet, dass dort die Anbieter genetischer Diagnostik "in der Regel Wert auf eine Anbindung an das etablierte medizinische System" legen (Argos 1999, S. 19).

In Großbritannien hingegen wird offensichtlich die Möglichkeit der Entwicklung eines kommerziellen Marktes für Gentests ernst genommen. Das von

1.5 Bevölkerungs-Screening

Die Holländische Cystische Fibrose-Vereinigung nimmt in dieser Frage eine andere Haltung ein (Weggen 1997). Einem Bevölkerungs-Screening wird dann zugestimmt, wenn 1. Klarheit über das Ziel eines solchen Screening herrscht, 2. die Teilnahme freiwillig ist (auch ohne sozialen Druck) und 3. die sozialen

Die **humangenetischen Fachverbände** in Deutschland haben sich in zwei **Stellungnahmen** allgemein zur **Heterozygotentestung** und speziell zu einem Bevölkerungs-Screening bei Mukoviszidose geäußert. In beiden Stellungnahmen wird ein Screening nicht grundsätzlich, aber unter den derzeit realisierbaren Rahmenbedingungen abgelehnt.

Die Durchführung eines Heterozygoten-Screening wird davon abhängig gemacht, dass ein ausreichendes Informationsangebot sichergestellt werden kann, d.h. letztlich die Bevölkerung über Leistung und Grenzen und mögliche Konsequenzen von Tests aufgeklärt ist und ausreichende Kapazitäten für genetische Beratung zur Verfügung stehen (Zerres 1999). Dies ist zurzeit nicht gewährleistet. Grundsätzlich bleibt aber auch zu fragen, ob ein Screening etwa von Neugeborenen oder auch ein aktives Testangebot an Erwachsene, angesichts der unterschiedlichen Ausprägung der Krankheit, der Lebensqualität der Betroffenen...
und der Unsicherheit der Testaussage medizinisch sinnvoll und ethisch vertretbar ist.

Genanalytische Untersuchungen sind in beiden Modellprojekten derzeit nicht vorgesehen. Es handelt sich vielmehr um Methoden wie zum Beispiel die Tandem-Massenspektrometrie, d.h. um Untersuchungen auf der Genproduktebene. Von der technischen Seite her steht einer Integration DNA-analytischer
Verfahren in Neugeborenen-Screening-Programme nichts im Wege: "DNA-based newborn screening programs, which will ask far more questions about each sample, could be developed within a decade" (Reilly/Page 1998, S. 16).

Die Deutsche Gesellschaft für Humangenetik lehnt die Durchführung von Bevölkerungs-Screening, wie oben gezeigt, derzeit aus dem Grund ab, dass die Rahmenbedingungen hierfür nicht gegeben seien. Es gibt aber Anzeichen für ein zunehmendes Interesse an der Durchführung von breiter angelegten Screening-Programmen (Argos 1999). In der Planung befindet sich derzeit beispielsweise ein Pilotprojekt zur Durchführung eines Bevölkerungs-Screening auf Hämochromatose, eine gegenwärtig unterdiagnostizierte, vielfach schwere, aber leicht präventiv vermeidbare Krankheit. Ob man dieses Pilotprojekt als erstes Indiz für ein Abweichen von der bislang geübten Zurkhaltung der deutschen Humangenetik in der Frage der Durchführung von Populations-Screening werten muss, ist fraglich. Immerhin würde die Durchführung eines Hämochromatose-Massen-Screening jedoch bedeuten, dass in Deutschland zum erste Mal ein Bevölkerungs-Screening-Programm auf molekularbiologischer Grundlage durchgeführt würde.

Damit und erst Recht mit dem Einstieg in ein Heterozygoten-Screening ganzer Bevölkerungsgruppen käme genetische Diagnostik für Erwachsene in Deutschland erstmals über die Grenzen der humangenetischen Beratung hinaus zum Einsatz - als aktives Angebot an zunächst nicht informierte oder aktiv Rat suchende Bevölkerungsgruppen.

2. Pränatale Diagnostik

2.1 Stand der Inanspruchnahme

werden aus dem Uterus (bzw. der Plazenta) fetale Zellen entnommen, die dann mittels zytogenetischer oder direkt DNA-analytischer Methoden auf genetische Abweichungen untersucht werden können.

Ziel der pränatalen Diagnostik ist es laut den Richtlinien der Bundesärztekammer (Bundesärztekammer 1998):

- "Störungen der embryonalen und fetalen Entwicklung zu erkennen,
- durch Früherkennung von Fehlentwicklungen eine optimale Behandlung der Schwangeren und des (ungeborenen) Kindes zu ermöglichen,
- Befürchtungen und Sorgen der Schwangeren zu objektivieren und abzubauen und
- Schwangeren Hilfe bei der Entscheidung über die Fortsetzung oder den Abbruch der Schwangerschaft zu geben".

Dass die Inanspruchnahme der PD in den letzten Jahren weiter zugenommen hat, zeigen die kassenärztlichen Abrechnungsziﬀern für Amniozentese und Chorionbiopsie (Tab. 1, Kap. III.1.1). Im Jahr 1997 wurden 68.267 Amnio-

Die weitere Ausweitung der Inanspruchnahme lässt durchaus den Schluss zu, dass der Schritt zu einer quasi routinemäßigen Nutzung pränataler Diagnostik nicht mehr fern ist. Nach Schätzungen des Humangenetikers Karsten Held macht der Anteil der Fälle, in denen die PD wegen eines "nachgewiesenen familiären Risikos" durchgeführt wird, nur knapp 3% aller Indikationen aus. In 2% der Fälle ist die PD dadurch indiziert, dass die Familie bereits ein Kind mit einer Chromosomenanomalie hat (Kollek 2000, S. 78). In allen anderen Fällen wird die PD aufgrund des Alters der schwangeren Frau oder wegen geäußerter unspezifischer, nicht durch bekannte familiäre Risiken bedingte Ängste (auch jüngerer Frauen) vor der Geburt eines behinderten Kindes durchgeführt.

Bisher bestand eine Begrenzung des Angebots pränataler Diagnostik auf Frauen über 35, da statistisch das Risiko einer Behinderung des Kindes mit dem Alter der schwangeren Frau (aber auch des Mannes) steigt. Die Begrenzung des Angebots durch die so genannte Altersindikation erklärte sich zum einen daraus, dass mit der invasiven Methode der Entnahme von Zellen des Fötus, an denen die Untersuchung durchgeführt wird, ein geringes Risiko einer Frühgeburt verbunden ist (ein Risiko von 1% bei der Amniozentese, von 1-4% bei der Chorionbiopsie). Zudem spielte aber auch die Überlegung eine Rolle, dass die Kapazitäten der gynäkologischen Praxen und humangenetischen Institute durch ein Angebot an alle schwangeren Frauen überfordert wären.

2. Pränatale Diagnostik

Triple-Test

III. Humangenetische Beratung, pränatale Diagnostik...

Nippert und Horst (1994) konnten zeigen, dass Frauen, die sich aufgrund eines "auffälligen" Triple-Tests einer pränatalen Chromosomenanalyse unterzogen, im Vergleich zu andern Indikationen (fortgeschrittenes Alter, vorangegangenes Kind mit einer Chromosomenstörung, monogene Erbkrankheit, mütterliche Angst) signifikant häufiger Ängste hatten (z.B. vor der invasiven Diagnostik, vor einer Fehlgeburt, vor einem positiven Ergebnis, Angst vor der möglichen Entscheidung für oder gegen einen Schwangerschaftsabbruch).

Beratung

Laut den Richtlinien der Bundesärztekammer (Bundesärztekammer 1998) und einschlägiger Stellungnahmen der Gesellschaft für Humangenetik kann wegen des bestehenden Konfliktes zwischen dem elterlichen Wunsch nach einem ge-
sunden Kind und der grundsätzlichen Anerkennung des Schutzbedürfnisses des Ungeborenen, das Ergebnis der PD allein nicht rechtfertigen, "zu einem Schwangerschaftsabbruch zu raten, ihn zu fördern oder durchzusetzen". Wie in der genetischen Beratung insgesamt muss das Prinzip der nicht-direktiven Beratung gelten, die der Frau eine informierte und autonome Entscheidung für oder gegen eine Schwangerschaft ermöglichen soll.

Mit Ausweitung der PD zur Routineuntersuchung scheint diesem Prinzip immer weniger Beachtung geschenkt zu werden. Die Sorge von Frauen um das Wohl ihres Kindes und der Wunsch, ein gesundes Kind zur Welt zu bringen, ebenso wie die Angst vor der Belastung durch das Leben mit einem behinderten Kind treffen auf ein umfangreiches, durch die Krankenkassen finanziertes Angebot und eine rechtliche Situation, die kaum geeignet erscheint, dem von den Humangenetikern propagierten Prinzip der non-direktiven Beratung sowie der freien Entscheidung der Frau für oder gegen eine PD Geltung zu verschaffen.

2.2 § 218 und Wegfall der embryopathischen Indikation

Von den 103.586 Schwangerschaftsabbrüchen, die 1994 gemeldet wurden, wurden 0,8% aufgrund der damals noch bestehenden eugenischen oder embryopathischen Indikation vorgenommen. Seit der Neuregelung des § 218 im Jahr 1995 liegen statistische Daten zur Zahl der Schwangerschaftsabbrüche aufgrund einer diagnostizierten Krankheit oder Behinderung des Fötus nicht mehr vor. Der Gesetzgeber hat, um klarzustellen, "dass das ungeborene behinderte
Leben im Vergleich zum ungeborenen unbehinderten Leben keinem Sonder-
status unterworfen ist", die embryopathische Indikation nicht aufgehoben,
sondern in die medizinische Indikation integriert (Bundesregierung 1996). Da-
nach ist "der mit Einwilligung der Schwangeren von einem Arzt vorgenommene
Schwangerschaftsabbruch [...] nicht rechtswidrig, wenn der Abbruch der
Schwangerschaft unter Berücksichtigung der gegenwärtigen und zukünftigen
Lebensverhältnisse der Schwangeren nach ärztlicher Erkenntnis angezeigt ist,
urn eine Gefahr für das Leben oder die Gefahr einer schwerwiegenden Beein-
trächtigung des körperlichen oder seelischen Gesundheitszustandes der
Schwangeren abzuwenden, und die Gefahr nicht auf eine andere für sie zumut-
bare Weise abgewendet werden kann" (§ 218a STGB).

Der Wegfall der embryopathischen Indikation und ihre Integration in die
medizinische Indikation hat nun aber dazu geführt, dass die Frist von 22
Wochen, die bisher für den Schwangerschaftsabbruch aufgrund einer eu-
genischen Indikation galt, ebenfalls weggefallen ist. Ein Schwangerschafts-
abbruch bei einer Behinderung des Kindes ist nun auch noch im letzten Drittel
der Schwangerschaft (nach der 24. Woche) möglich, wobei der Abbruch durch
die medikamentöse Einleitung der Geburt vorgenommen wird. Damit kann die
Abtreibung zu einem Zeitpunkt stattfinden, zu dem heute mit den Möglichkeiten
der perinatalen Medizin Frühgeborene am Leben erhalten werden können. Die
Bundesärztekammer stellt in ihrer Erklärung "Schwangerschaftsabbrüche nach
Pränataldiagnostik" fest: "Der Zeitpunkt, zu dem eine extraterine Lebensfähig-
kkeit des Ungeborenen gegeben ist, muss in der Regel als zeitliche Begrenzung
für einen Schwangerschaftsabbruch gesehen werden", d.h. in der 22.-24. Woche.
Diese Erklärung erfolgte als Reaktion auf den Fall des "Oldenburger Babys". Hier
hatte eine Frau in der 25. Woche nach der Diagnose eines Down-
Syndroms eine Abtreibung vornehmen lassen, die das Kind (mit schweren zu-
sätzlichen Schädigungen) überlebte. Die Eltern erstatteten Strafanzeige gegen
die behandelnden Ärzte, weil diese sie nicht über die Möglichkeit aufgeklärt
hätten, dass der Fötus den Abbruch überleben könnte.

Späte Schwangerschaftsabbrüche sind selten. Von den 130.890 Abbrüchen,
die laut statistischem Bundesamt 1997 vorgenommen wurden, fanden 190 nach
der 23. Schwangerschaftswoche statt. Daten darüber, wie viele dieser Abbrüche
aufgrund einer diagnostizierten Erkrankung oder Behinderung des Kindes
(wie z.B. Trisomie 21) vorgenommen wurden, liegen nicht vor. Auch wenn
davon ausgegangen werden kann, dass dies nur in Ausnahmen der Fall war,
scheint der Wegfall einer Grenze für den Schwangerschaftsabbruch bei
"embryopathischer Indikation" problematisch. Die im Falle einer Lebendgeburt
2. Pränatale Diagnostik

2.3 Zukünftige Entwicklung und gesellschaftliche Diskussion um pränatale Diagnostik und Schwangerschaftsabbruch

2.3.1 Weitere Zunahme der Inanspruchnahme von PD?

Gegen eine zukünftige Ausweitung der Inanspruchnahme der Pränataldiagnostik generell und auch der Inanspruchnahme neuer DNA-analytischer Tests spricht die doch erhebliche Belastung der Frauen durch das Verfahren, die eine leichtfertige Inanspruchnahme genetischer Diagnostik, die unmittelbar mit der Frage konfrontieren könnte, die Schwangerschaft abzubrechen, unwahrscheinlich erscheinen lässt. In entsprechenden Umfragen in verschiedenen Ländern lehnen konstant ca. 25% der befragten Frauen eine PD ab, auch wenn eine Altersindikation vorliegt (Nippert 2000).

Der Einsatz von Tests auf Krankheitsdispositionen (für Krebserkrankungen oder Herzkreislauferkrankungen) im Rahmen der pränatalen Diagnostik wird,
III. Humangenetische Beratung, pränatale Diagnostik ...

... anders als die Durchführung von Tests auf spätmanifestierende, aber mit Sicherheit ausbrechende schwere Erkrankungen (wie z.B. Chorea Huntington), allgemein als medizinisch und ethisch fragwürdig abgelehnt. Wie brüchig aber diese Grenze des Einsatzes neuer gendiagnostischer Möglichkeiten zumindest im Falle der Krebsdiagnostik sein könnte, wird daran deutlich, dass **offensichtlich die Zahl von Anfragen** nach einer **pränatalen Gendiagnostik** für eine **Disposition für Brustkrebs zunimmt** (Argos 1999). Eine derzeit laufende europaweite Umfrage bei den genetischen Zentren bezüglich der Frequenz und Behandlung derartiger Anfragen (Elger 1998) weist nicht nur eine steigende Tendenz solcher Anfragen, sondern auch eine große Unsicherheit im Umgang damit nach. Während z.B. in Frankreich und Italien mehrfach die gewünschten Tests durchgeführt wurden, stießen sie in Belgien auf Ablehnung; und auch die bisher in den USA publizierten Stellungnahmen sprechen sich gegen pränatale Tests bei BRCA1-Mutationen aus: "A host of moral and ethical issues makes it inappropriate to offer testing for breast and ovarian cancer susceptibility as part of prenatal diagnosis" (Collins 1996, S. 1739).

Aus Sicht von Medizinern und Humangenetikern geht es bei der PD nicht um die Prävention von behindertem Leben, sondern PD wird als ein Angebot an Frauen, die um die Gesundheit ihres Kindes besorgt sind, verstanden. Im Falle eines negativen Ergebnisses trage die PD dazu bei, dass die Schwangerschaft unbelastet fortgeführt werden kann. Dass die PD als eine solche Entscheidungshilfe angesehen werden kann, zeige der Umstand, dass sie von vielen Frauen aktiv nachgefragt werde. Kritiker halten dem entgegen, dass alleine das Angebot der PD an Frauen, Ängste vor einem behinderten Kind auslöse und
2. Pränatale Diagnostik

Eine entsprechende Nachfrage schaffe. Langfristig bestehe die Gefahr, dass über die bereits fragwürdige derzeitige Praxis eines generellen Angebots zur Untersuchung auf Chromosomenanomalien des Fötus hinaus die PD genutzt werde, um alle möglichen genetisch bedingten Risiken und genetischen Auffälligkeiten des Fötus zu testen.

2.3.2 Frauenbewegung und Pränataldiagnostik

Es ist die der PD immanente Konsequenz der Abtreibung (in den meisten Fällen gibt es keine therapeutischen Möglichkeiten), die die PD als ethisch problematischer erscheinen lässt und die Diskussion um pränatale Diagnostik unaus- weichlich mit der um den § 218 verknüpft. Die Diskussion um den § 218 war eines der wichtigsten Themen für die Frauenbewegung. Für die neue, in den 60er und 70er Jahren entstehende feministische Bewegung kann der Streit um eine Liberalisierung des § 218 gar als eines der wichtigsten Themen gelten, um das herum sich die Bewegung formierte und mit Teilen der alten Frauenbewegung (Parteien, Gewerkschaften) - bei allen ansonsten bestehenden Differenzen zusammenfand. Obwohl die erste intensive Diskussion um den § 218 der Nach- kriegszeit in den 70er Jahren zeitlich parallel zur schrittweisen Etablierung der PD in die medizinische Praxis stattfand, wurde, so zeigen im Rahmen des TAB-Projektes durchgeführte Interviews und Literaturrecherchen (Stellmach
III. Humangenetische Beratung, pränatale Diagnostik ...

Erst Mitte der 80er Jahre lässt sich in Resolutionen, Beiträgen zu Kongressen und Ähnlichem ein in der Regel kritisches Aufgreifen des Themas PD feststellen. Offenbar waren es hier die öffentliche Diskussion um Gentechnologie und Reproduktionstechnik (In-vitro-Fertilisation) und vor allem auch die Stellungnahmen von kritisch gegenüber der PD eingestellten Behindertengruppen, die die Aufmerksamkeit der Frauenbewegung auf die PD lenkten und dazu führten, dass der Begriff der Selbstbestimmung nicht verworfen, aber im Hinblick auf die Reproduktionsmedizin insgesamt und die PD problematisiert wurde.

Es waren und sind zwei Themen, die eine ambivalente bis ablehnende Sicht der PD bestimmen. Zum einen ist dies die Wahrnehmung der Gefahr einer "schleichenden Eugenik", die durch die Ausweitung der PD als Quasi-Routineuntersuchung in Gang gesetzt werden könnte. Die Ausweitung des Angebots an PD wird in dieser Sicht als ethisch fragwürdige Unterscheidung zwischen normalen und kranken Feten gesehen, die letztlich zu einer Diskriminierung von behinderten Menschen führt. Zum anderen ist es die Belastung des Schwangerschaftserlebens von Frauen durch die PD, die die Diskussion um die PD nicht nur in der neuen feministischen Frauenbewegung, sondern auch z.B. in kirchlichen Frauenverbänden prägt. Der medizinische Sinn der PD als Routineangebot sei angesichts der Tatsache, dass nur etwa 1% aller Kinder mit Krankheiten oder Behinderungen zur Welt kommen, die genetische Ursachen haben, grundsätzlich in Frage zu stellen. Das generelle Angebot der Pränataldiagnostik an nahezu alle Schwangeren wird heute von den meisten Frauenverbänden als Angebot gesehen, das unnötig zu einer Pathologisierung der Schwangerschaft führt und der Frau die Last einer "Qualitätskontrolle" für das ungeborene Leben aufbürdet. Tendenziell werde so jede Schwangerschaft durch das Angebot der PD zur Risikoschwangerschaft.

Die Konsequenzen, die daraus gezogen, bzw. die Forderungen, die diesbezüglich erhoben werden, sind unterschiedlich. Einige Verbände greifen die auch von Humangenetikern geäußerten Bedenken auf, dass immer mehr Diag-
nosen ohne eingehende Beratung stattfinden und daher das Beratungsangebot verbessert werden müsse. Eindeutig wird dabei das Schwergewicht auf eine **verbesserte psychosoziale (und nicht allein humangenetische) Beratung** gelegt, die die Konfliktsituation, in der sich Frauen in der Entscheidung, ob sie eine PD durchführen lassen und ob sie die Schwangerschaft nach einem positiven Befund fortführen sollen, ernst nimmt. Insbesondere, aber nicht allein, von den mittlerweile 19 in Deutschland tätigen unabhängigen Frauengesundheitszentren und der in Bremen tätigen selbstorganisierten Beratungseinrichtung zur PD, CARA, wird eine **unabhängige Beratung** (d.h. unabhängig von der Profession der Gynäkologen/innen und Humangenetiker/innen) gefordert. Das Angebot an Diagnostik und Beratung durch Mediziner und Humangenetiker wird als nicht-neutral angesehen. Es wird vielmehr eine Tendenz der Beratung zur Inanspruchnahme von PD wahrgenommen, in deren Rahmen die Frage, ob PD überhaupt sinnvoll ist, sich kaum noch stelle, und die es fraglich erscheinen lasse, ob Frauen, wie mit dem Prinzip der non-direktiven Beratung postuliert, selbstbestimmt über die Inanspruchnahme der PD entscheiden können. Mit dem Hinweis auf die geringe Häufigkeit von genetisch bedingten Fehlbildungen und den Umstand, dass auch durch PD Fehlbildungen nicht gänzlich ausgeschlossen werden können und PD von den meisten Frauen als belastend empfunden wird, wird in den letzten Jahren von Frauen, die in der unabhängigen Frauengesundheitsbewegung tätig sind, vermehrt gefordert, pränatale Diagnostik (und das heißt auch die Ultraschalluntersuchung) aus der Schwangerschaftsvorsorge als Routineangebot ganz herauszunehmen (Stellmach 1999).

Die grundsätzlich Frage, die sich in diesem Zusammenhang stellt und auch innerhalb der Frauenbewegung diskutiert wird, ist, inwiefern die PD von Frauen selbst aktiv nachgefragt wird, die Ausweitung des Angebots also einer stärkeren Nachfrage entspricht. Es ist aus entsprechenden Untersuchungen bekannt, dass Frauen eine PD nicht leichtfertig in Anspruch nehmen. Die Motive, die befragte Frauen angeben, reichen von der Sorge um die Gesundheit des werdenden Lebens oder Mitleid mit dem werdenden Kind, dem ein leidvolles Leben mit einer schweren Behinderung erspart werden soll, bis hin zu der Angst, dem Leben mit einem behinderten Kind nicht gewachsen zu sein. Ebenso bekannt ist aber, dass ein Großteil der Frauen, die die PD in Anspruch nehmen, erst von ihrem Frauenarzt mit dieser Möglichkeit konfrontiert werden und dann in einen inneren Konflikt geraten. In großen Teilen der Frauenbewegung wird heute die wachsende Zahl an pränatalen Diagnosen damit erklärt, dass das Angebot an Testmöglichkeiten, gekoppelt mit der durch die Rechtsprechung bestehenden Verpflichtung des Arztes zum Hinweis auf die Möglichkeiten der PD,
zu einer Verunsicherung der schwangeren Frauen führe. Es sei nicht das Bedürfnis der Frauen selbst, jedes Risiko auszuschließen, aus dem die Ausweitungen der PD als Routineuntersuchung im Rahmen der Schwangerschaftsvorsorge resultiere. Die im Rahmen des Monitoring-Projektes unternommene Recherche (Stellmach 1999) hat ergeben, dass zu keiner Zeit aus der Frauenbewegung die Einführung der PD oder ein Ausbau des Angebots gefordert wurde. Aus der Sicht der Frauenbewegung wird die Ausweitung der Praxis der PD im Wesentlichen als angebotsinduziert erklärt, umso mehr wird in neuerer Zeit die Notwendigkeit betont, für eine unabhängige Beratung zu sorgen, um eine selbstbestimmte Entscheidung von Frauen für oder gegen die Durchführung einer PD sicherzustellen.

2.3.3 Selbsthilfegruppen Behindeter und Eltern behinderter Kinder

Überwiegend drückt sich in den Reaktionen der Eltern- und Betroffenengruppen eine positive Einstellung zur Erforschung genetischer Krankheits-

Die genetische Diagnostik wird, wenn sie die Möglichkeit einer frühzeitigen Therapie und damit eine Verhinderung des Ausbruchs der Krankheit oder eine Linderung der Symptome ermöglicht, begrüßt. Eltern von Kindern mit lebensbedrohlichen genetisch bedingten Erkrankungen (wie z.B. Harnstoffzyklusdefekten) begrüßen die genetische Diagnostik auch als Möglichkeit, die Geburt eines weiteren betroffenen Kindes zu verhindern. Bekannt ist, dass Tests für spätmanifestierende Erkrankungen von Betroffenen zwiespältig gesehen werden. Von Chorea Huntington betroffene Personen (und Selbsthilfegruppen) lehnen den Test zum Teil strikt ab und sehen das Wissen um eine mögliche eigene Betroffenheit oder die der Kinder als Beeinträchtigung ihrer Lebensqualität, andere wiederum begrüßen den Test als Möglichkeit besserer Lebens- und Familienplanung.

Die pränatale Diagnostik wird als Möglichkeit der Familienplanung für Eltern, die um ihr spezifisches Risiko wissen, nicht abgelehnt. Sie wird aber, sofern sie sich als Routineangebot an alle Schwangere richtet, als höchst problematisch betrachtet. So lehnen z.B. die von Mukoviszidose Betroffenen ein generelles Screening auf Mukoviszidose unter Verweis auf ihre Lebensqualität ab und sehen sich durch die Möglichkeit des Tests stigmatisiert. Die Ausweitung der Praxis der pränatalen Diagnose wird von den meisten Betroffenen- und Elternverbänden als Diskriminierung behinderten Lebens gesehen.

2. Pränatale Diagnostik

Anwendung der so genannten 'medizinischen Indikation'. Eingeräumt wird in der Stellungnahme, dass humangenetische Beratung "für andere Krankheiten" möglicherweise anders zu beurteilen sei.

Die **Einschätzungen der Qualität der genetischen Beratung ist differenziert.** Kritisch wird auf den geringen Anteil an psychosozialer Beratung hingewiesen sowie auf den Umstand, dass im Rahmen der PD Beratung oft gar nicht stattfinde. In den meisten Antworten wird der Mangel an Information über die Lebensqualität behinderter Menschen im Rahmen der Beratung beklagt. Die **Entwicklungsmöglichkeiten behinderter Kinder - so wird insbesondere von Eltern bemängelt - würden in der Beratung zu wenig berücksichtigt.**

Einzelne Selbsthilfegruppen bieten hier auch die Mitarbeit in der Beratung an, um den Kontakt der Ratsuchenden mit den Betroffenen herzustellen.

3. Präimplantationsdiagnostik

Bei der Präimplantationsdiagnostik (PGD, nach engl. preimplantation genetic diagnosis) wird im Rahmen einer künstlichen Befruchtung eine genetische Untersuchung zur Feststellung von genetischen Abweichungen nicht am Fötus
III. Humangenetische Beratung, pränatale Diagnostik ...

in utero, sondern an Eizellen oder an in vitro erzeugten Embryonen im Früh-
stadium der Embryonalentwicklung vorgenommen. Embryonen bzw. Eizellen,
bei denen das gesuchte genetische Merkmal vorliegt, werden selektiert, und nur
solche, die das gesuchte genetische Merkmal nicht aufweisen, werden in den
Uterus der Frau zur Austragung einer Schwangerschaft transferiert. Das Ver-
fahren wurde 1990 zum ersten Mal erfolgreich angewandt. Mittlerweile sind
weltweit mehrere hundert Kinder nach der Anwendung einer Präimplantations-
diagnostik zur Welt gekommen. Bisher ist nach einhelliger Meinung die PGD
in Deutschland verboten, weil das Embryonenschutzgesetz Eingriffe an totipo-
tenten menschlichen Embryonalzellen verbietet und bislang aus technischen
Gründen nur solche Zellen (bis zum Achtzellstadium des Embryos) für eine
PGD in Frage kamen. Die technische Fortentwicklung des Verfahrens und seine
Anwendung in anderen Ländern hat aber auch in Deutschland eine Diskussion
um die Einführung der PGD und die Frage der Geltung der Regelung durch das
Embryonenschutzgesetz in Gang gebracht (vgl. hierzu und zum Folgenden:
Kollek 2000).

3.1 Verfahren der Präimplantationsdiagnostik

Für die PGD stehen zwei Verfahren zur Verfügung, die Polkörperdiagnose und
die Embryobiopsie. Bei der Polkörperdiagnose wird die Diagnose am sog. Pol-
körper einer unbefruchteten Eizelle vorgenommen, bevor die Eizelle künstlich
befruchtet und der Embryo in den Uterus der Frau transferiert wird. Hierbei
erfolgt also keine Manipulation an einem menschlichen Embryo. Da bei der
Polkörperdiagnose aber nur das Genom der Mutter, nicht aber das des Vaters
untersucht werden kann, wird sie zurzeit hauptsächlich bei Frauen über 35 an-
gewandt, die sich wegen Fertilitätsproblemen einer In-vitro-Fertilisation unter-
zeihen. Die Diagnose wird dann vorgenommen, um das Vorliegen von Chro-
mosomenanomalien wie Trisomie 21 auszuschließen. Für Eltern, die aufgrund
des Vorliegens eines Risikos für eine monogen bedingte Erkrankung oder Be-
hinderung des Kindes (wie z.B. Mukoviszidose oder Chorea Huntington) eine
PGD in Anspruch nehmen, kommt nur das Verfahren der Embryobiopsie in
Frage. Nach einer Hormonbehandlung der Frau (um möglichst viele Eizellen
einem Zyklus zu erhalten) wird bei der Embryobiopsie die Diagnostik nach
künstlicher Befruchtung und In-vitro-Kultivierung der Embryonen bis zum 4-
10-Zellstadium vorgenommen. Den Embryonen werden ein bis zwei Zellen
entnommen, an denen der genetische Test durchgeführt wird. Nur diejenigen
3. Präimplantationsdiagnostik

3.2 Stand der Anwendung und Diskussion

Diagnostik durchgeführt wurde ist nicht bekannt -, auf Wunsch der Eltern in vitro fertilisierte Embryonen danach zu selektieren, ob ihr Gewebetypus es erlaubt, als Organspender für ein erkranktes Geschwisterkind zu dienen, und so eine Heilung des bereits erkrankten Kindes zu ermöglichen (Boyce 1999). Kritiker befürchten angesichts solcher Tendenzen eine zunehmende Ausweitung der Testpraxis im Rahmen der PGD über klassische schwerwiegende Erbkrankheiten hinaus auch auf solche Merkmale, bei denen lediglich ein mehr oder weniger erhöhtes Risiko, aber keine Sicherheit für den Ausbruch einer Krankheit vorliegt.

3. Präimplantationsdiagnostik

3.2 Präimplantationsdiagnostik und das deutsche Embryonenschutzgesetz

Die sich abzeichnende Möglichkeit, dass auch in einem späteren Stadium der Embryonalentwicklung eine PGD erfolgreich durchgeführt werden kann, hat in Deutschland mittlerweile zu einer erneuten Diskussion um die PGD und das Embryonenschutzgesetz geführt, die durch eine Stellungnahme der Ethikkommission der Universität Lübeck ausgelöst wurde (Ethikkommission 1996). Diese hatte sich mit dem Wunsch eines Elternpaares befasst, das, da es bereits ein Kind mit Mukoviszidose hatte und bei einer weiteren Schwangerschaft eine Abtreibung hatte vornehmen lassen, eine PGD durchführen lassen wollte, um für ein weiteres gewünschtes Kind die Behinderung auszuschließen und eine

den Missbrauch von Embryonen, das heißt eine Herstellung zu einem anderen Zweck als dem der Herbeiführung einer Schwangerschaft, auszuschließen, kommt Kollek aber auch hinsichtlich einer PGD an Blastozysten zu dem Schluss, dass zwar nicht die Entnahme der Zellen zum Zweck der Diagnostik gegen das Gesetz verstoße, wohl aber die bei positivem Befund erfolgende Vernichtung des Embryos. Einzig die Polkörperdiagnostik, mit der mütterlich bedingte Chromosomenveränderungen, aber auch heterozygote Veranlagungen für Erbkrankheiten festgestellt werden können, stelle keinen Verstoß gegen das Embryonenschutzgesetz dar.

Im Rahmen der Diskussion um das Pro und Contra einer Zulassung der PGD in Deutschland wird die Frage zu klären sein, ob Eltern mit Kinderwunsch, die um ein schweres Risiko für eine genetisch bedingte Erkrankung des Kindes wissen, die Nutzung der PGD verwehrt werden kann, wenn die Alternative eine Abtreibung nach positivem Ergebnis einer Pränataldiagnostik wäre. Der Richtlinientext der Bundesärztekammer geht von einer Zulässigkeit der PGD in diesem Falle aus. Die Schwierigkeit wird - sollte sich diese Position durchsetzen - darin bestehen, die Anwendung der PGD auf diesen Personenkreis zu begrenzen. Was als eine schwerwiegende Erkrankung gelten kann, ist nicht exakt zu definieren. Schon die Formulierung im Entwurf der Bundesärztekammer, dass "in der Regel" spätermanifestierende Erkrankungen nicht als Indikation gelten können, macht die Schwierigkeiten der Eingrenzung deutlich. Offensichtlich wird eine PGD für Krankheiten, die in einem späteren Alter zum Ausbruch kommen oder mit hoher Wahrscheinlichkeit zum Ausbruch kommen können, eher abgelehnt. Dieser Ablehnung scheint aber bei einer schweren spätermanifestierenden Krankheit wie Chorea Huntington schwer haltbar, wenn auf der anderen Seite etwa eine Krankheit wie Mukoviszidose als schwerwiegend eingestuft würde. Auch könnte es schwer fallen, zu begründen, warum für Gentests, die lediglich eine Risikoaussage zulassen - z.B. in Fällen, in denen bei der Frau ein 50%-iges Risiko für eine Brustkrebserkranckung vorliegt - eine PGD zur Vermeidung der Geburt eines Kindes mit dieser Anlage verweigert werden könnte, wenn sie im Falle der Mukoviszidose zulässig ist.

Übergeordnet stellt sich die Frage einer Bewertung der PGD vor dem Hintergrund des Zieles des Embryonenschutzgesetzes, menschliche Embryonen medizinischer und wissenschaftlich-technischer Verfügbarkeit aus grundsätzlichen ethischen Erwägungen zu entziehen, um sie keinem selektierenden Kalkül anheim zu stellen. Dieses Schutzziel könnte durch die Zulassung der PGD aufgeweicht werden. Fällt diese grundsätzliche Grenze, geriete ein Verbot verbrauchender Embryonensforschung, etwa zum Verständnis der menschlichen
Embryonalentwicklung mit dem Ziel der Aufklärung der Ursachen von Entwicklungsstörungen unter Legitimationsdruck. Dabei ist auch zu berücksichtigen, dass Eltern aus Risikofamilien mit Kinderwunsch durchaus Alternativen zu PGD zur Verfügung stehen. Hierbei ist sowohl an die Möglichkeit der Adoption als auch an die Möglichkeit der Polkörperdiagnostik zu denken, mittels derer sich eine Vielzahl von schweren erblichen Erkrankungen an der Eizelle vor der Befruchtung diagnostizieren lassen, ohne zwischen "kranken" und "gesunden" Embryonen selektieren und ohne die Entwicklung eines menschlichen Embryos gezielt beenden zu müssen.

4. Regelungsbedarf und Regelungsmöglichkeiten

4.1 Standesrechtliche Empfehlungen und Richtlinien und sonstige einschlägige rechtliche Regelungen

Regelungen zur Durchführung genetischer Diagnostik und humangenetischer Beratung bestehen zurzeit in Deutschland im Wesentlichen nur in Form von Empfehlungen und Richtlinien der Fachverbände und durch das ärztliche Standesrecht. Zur Anwendung genetischer Diagnostik im Rahmen humangenetischer Beratung und im Rahmen der pränatalen Diagnostik haben die Gesellschaft für Humangenetik, der Berufsverband medizinische Genetik sowie der Wissenschaftliche Beirat der Bundesärztekammer in verschiedenen Empfehlungen, Positions- papieren und Richtlinien zur Durchführung von Diagnosen und Beratung Stellung genommen. Darin wird u.a. festgestellt:

- Genetische Diagnosen dürfen nur mit ausdrücklicher Zustimmung des/der Ratsuchenden und unter strikter Beachtung des Datenschutzes durchgeführt werden; grundsätzlich unterliegen genetische Beratung und Diagnose der ärztlichen Schweigepflicht.
- Diagnosen dürfen nur von qualifizierten Medizinern durchgeführt werden, und die Beratung sollte unter Hinzuziehung von sozialpsychologisch ausgebildeten Mitarbeitern durchgeführt werden.
Die Entscheidung über Konsequenzen, die aus einem positiven Testergebnis zu ziehen sind, soll die/der Betroffene selbst fällen. Die Beratung versteht sich als Unterstützung für eine informierte Entscheidung.

Die/der Beratende tritt nicht von sich aus an mögliche Träger einer genetischen Krankheit oder Disposition heran. Die Entscheidung über eine Mitteilung des Ergebnisses - z.B. an eventuell betroffene Verwandte - soll der betroffenen Person selbst überlassen bleiben.

Genetische Tests sollen nur bei Vorliegen einer medizinischen Indikation (z.B. Alter, Hinweise aus einer Familienanamnese) durchgeführt werden.

Eine prädiktive Diagnostik an Kindern für Krankheiten, die erst im Erwachsenenalter auftreten, wird nur dann als medizinisch sinnvoll angesehen, wenn mit der Diagnose sinnvolle medizinische Interventionen angeboten werden können.

Ein Heterozygoten-Screening für Mukoviszidose wird derzeit für nicht sinnvoll gehalten, weil eine ausreichende Beratung und Aufklärung der Testpersonen zurzeit nicht gewährleistet werde kann.

Zur Sicherstellung der Fachkunde bei der Durchführung humangenetischer Beratung und Diagnostik wurde die Bezeichnung Facharzt für Humangenetik eingeführt und eine entsprechende Weiterbildungsordnung beschlossen.

Die genannten Empfehlungen und Richtlinien tragen dem Umstand Rechnung, dass

- jede Art von Bevormundung oder gar Zwang im Rahmen der Durchführung genetischer Diagnostik, aber auch
- Formen indirekten Zwangs, wie er aus Vorurteilen des gesellschaftlichen Umfeldes erwachsen kann, sowie
- ein Mangel an Information über Krankheitsbilder und genetische Diagnosen

die Gefahr des Missbrauches genetischer Diagnostik in sich bergen. Das oberste Ziel, an dem sich die Richtlinien orientieren, besteht deshalb in der Schaffung von Möglichkeiten zu einer individuellen, selbstbestimmten, vorurteilsfreien, informierten und verantwortlichen Entscheidung für oder gegen die Nutzung gendiagnostischer Leistungen durch die Ratsuchenden selbst.
III. Humangenetische Beratung, pränatale Diagnostik...

Neben den selbst auferlegten professionellen Grenzen der Anwendung genetischer Tests gibt es eine Reihe anderer, sich aus der Rechtsprechung und aus gesetzlichen Bestimmungen ergebende Rahmenbedingungen, die die Anwendung genetischer Tests betreffen:

- Humangenetische Beratung ist, falls medizinisch indiziert, von den Krankenkassen anerkannt. Hierzu zählt die Beratung sowie die humangenetische Begutachtung einschließlich der Laboruntersuchungen.
- Staatliche Förderung und die Kostenübernahme der Krankenkassen für Reihenuntersuchungen an Neugeborenen sind auf solche Krankheiten begrenzt, bei denen eine frühzeitige Therapie möglich ist. Nach allgemeinem Arztrecht ist hierfür die Zustimmung der Mutter nötig. In der Praxis geht man aber davon aus, dass diese in der allgemeinen Einwilligung zu Diagnosemaßnahmen inbegriffen ist.
- Die Ergebnisse einer genetischen Diagnose unterliegen grundsätzlich der ärztlichen Schweigepflicht.
gericht München zur Unterhaltszahlung für ein behindertes Kind verklagt wurde, weil er die Eltern nach Auffassung des Gerichtes nicht ausreichend über das Risiko einer Behinderung aufgeklärt hatte, zurück. Der Arzt hatte damit argumentiert, es sei ein Verstoß gegen die Menschenwürdegarantie des GG, wenn ein Kind als Schaden gewertet würde.

Das **Embryonenschutzgesetz** mit dem darin enthaltenen Verbot der verbrauchenden Embryonenforschung, und dem Verbot, menschliche Embryonen zu einem anderen Zweck als dem der Herbeiführung einer Schwangerschaft herzustellen, verbietet bisher den Einsatz der Präimplantationsdiagnostik in Deutschland. Wie oben gezeigt, werden aber mittlerweile Zweifel an der Einschlägigkeit der Regelungen für die PGD geäußert.

Es sind insbesondere drei Fragen, die sich im Hinblick auf eine Regulierung des Marktes angesichts der wachsenden Zahl der Testmöglichkeiten, und einer Ausweitung von Angebot und Nachfrage stellen:

– Wer darf genetische Tests durchführen?
– Wie kann die Qualität von Diagnose und Beratung sichergestellt werden?
– Wie kann und soll über die Zulässigkeit neuer Testmöglichkeiten entschieden werden?

4.2 Wer darf genetische Tests durchführen? - Arztvorbehalt

– dass eine Barriere für die Entstehung eines "freien Testmarktes", auf dem genetische Diagnostik nach rein kommerziellen Gesichtspunkten angeboten würde, geschaffen würde. Die Durchführung von Gentests bliebe auf das etablierte System der medizinischen Versorgung beschränkt und unterliege den standesrechtlichen Bestimmungen.
– Für eine kompetente Durchführung der Tests durch geschultes Personal und eine angemessene Beratung wären günstige Voraussetzungen geschaffen.
– Von Ärzten (oder unter ihrer Leitung) durchgeführte Diagnosen fielen unter das Arztgeheimnis. Dies böte einen relativ hohen Standard beim Datenschutz.

Es ist allerdings nicht zu übersehen, dass sich die derzeitige - von vielen bereits als problematisch angesehene - Testpraxis im Rahmen der PD innerhalb des medizinischen Systems entwickelt hat. **Probleme wie unzureichende Beratung**
4. Regelungsbedarf und Regelungsmöglichkeiten

und Einsatz fragwürdiger Diagnostika (z.B. der Triple-Test) sind hier trotz des Arztvorbehaltes aufgetreten. Auch bei Ärzten ist ein Interesse an einer möglichst breiten Nutzung genetischer Testmöglichkeiten, sofern eine entsprechende zahlungskräftige Nachfrage besteht, nicht a priori zu verneinen.

Da nicht ausgeschlossen werden kann - auch wenn dies für die nahe Zukunft nicht wahrscheinlich ist - dass genetische Tests in die verschiedenen Felder medizinischer Praxis Einzug halten werden, also über den engeren Kreis der Humangenetik hinaus, kann der Arztvorbehalt bei der Durchführung genetischer Diagnostik sicherlich nicht als hinreichende Maßnahme angesehen werden, um die angesichts der oft schwerwiegenden individuellen Bedeutung der Diagnose notwendige Qualität von Beratung und Diagnostik sicherzustellen.

4.3 Sicherstellung der Qualität von Beratung und Diagnostik

Die aus der Vereinfachung, Verringerung und Vervielfältigung genetischer Testverfahren möglicherweise resultierende Diskrepanz zwischen Diagnose- und Beratungskapazitäten könnte insofern eine politische Intervention erforderlich machen, als das von allen an der Diskussion Beteiligten für wünschenswert oder sogar unverzichtbar gehaltene Junktim zwischen Beratung und Diagnose unter praktischen Bedingungen, insbesondere hinsichtlich der personellen und ökonomischen Ressourcen, auch eingehalten werden und durchführbar sein muss. Schon jetzt hält zum einen das Beratungsangebot nicht Schritt mit der Zahl der durchgeführten Diagnosen, und zum anderen ist vielfach auch der Umfang und die Qualität der Beratung (insbesondere im Rahmen der Pränatal-
III. Humangenetische Beratung, pränatale Diagnostik

diagnostik) mangelhaft. **Es wäre daher zu erwägen, das geforderte Junktim zwischen Beratung und Diagnose** wie auch Kriterien der Qualität von Beratung (non-direktive Beratung, Recht auf Nichtwissen etc.) **rechtlich verbindlich festzuschreiben**, wie dies im österreichischen Gentechnikgesetz geschehen ist.

Begleitend dazu müssten aber auch Schritte unternommen werden, der Beratung in der Praxis einen höheren Stellenwert zu verschaffen und für eine entsprechende Qualifikation der Beratenden zu sorgen. Zu prüfen wäre, welche Möglichkeiten es gibt, **Beratungsangebote zu kontrollieren** - z.B. durch die Forderung einer schriftlichen Bestätigung des Klienten gegenüber der Krankenkasse, dass eine ausführliche Beratung stattgefunden hat.

Von verschiedenen Seiten wird in diesem Zusammenhang vor allem die Forderung erhoben, zu einer **Verbesserung der Beratungssituation bei der Pränataldiagnostik** zu gelangen, wobei insbesondere neben der medizinischen bzw. humangenetischen Kompetenz auch die in Beratungssituationen erforderliche psychosoziale Beratungskompetenz betont wird. Eine verbesserte Integration psychosozialer Beratung in die genetische Beratung wäre zunächst über eine entsprechende personelle Ausstattung humangenetischer Institute und Aufwertung psychosozialer Kompetenzen in den fachärztlichen Weiterbildungsordnungen (Facharzt für Humangenetik und Facharzt für Frauenheilkunde) zu gewährleisten.

Darüber hinaus wird aber insbesondere aus der Frauenbewegung und von Frauenverbänden (vgl. Stellmach 1999) **ein von medizinischen und humangenetischen Interessen unabhängiges Beratungsangebot** gefordert - zum einen, um psychosozialen Aspekten der Beratung neben humangenetischen und medizinischen einen höheren Stellenwert zu verschaffen, zum anderen, um eine Beratung zu gewährleisten, die nicht von vornherein durch einen medizinischen, die (genetischen) Risiken betonenden Blick auf die Schwangerschaft geprägt ist. So hat auch die vom Land Bremen eingesetzte interdisziplinäre "Beratende Kommission Humangenetik" in ihrer "Stellungnahme zur Verbesserung der Beratungssituation vor Pränataldiagnostik in Bremen" (Beratende Kommission Humangenetik 1997) gefordert: "Es soll ein vielfältiges Beratungsangebot für Schwangere/Paare auf Dauer in Bremen geschaffen werden, so dass der teilweise kontroverse Charakter der Pränataldiagnostik durch die Unterschiedlichkeit der Beratungsanbieter sichtbar wird (z.B. durch die Beteiligung von Kirchen, freigemeinnützigen Trägern, Sozialverbänden, Privatinitiativen)." Frauen und Paare müssten jederzeit unabhängig vom betreuenden Arzt/der betreuenden Ärztin die Möglichkeit haben, sachkundige Informationen zum Thema Pränataldiagnostik einzuholen, und "der niedergelassene Frauenarzt/die niedergelas-
nen Frauenärztin, bei dem/der der Erstkontakt mit den Schwangeren/Paaren stattfindet, soll auf die Vielfältigkeit des Beratungsangebotes hinweisen”.

Eine weitergehende Möglichkeit, eine unabhängige Beratung zu gewährleisten, bestünde darin - wie vom deutschen Juristinnenbund gefordert -, eine **Trennung der Durchführung von Diagnose und Beratung** festzuschreiben. Wenn die Beratung vor der PD unabhängig vom betreuenden Arzt/der betreuenden Ärztin durch eine dafür zugelassene Beratungsstelle erfolgt, würde auch der den Ärzten durch die Rechtsprechung zum Schadensersatz auferlegte Druck gemindert (Lanz-Zumstein 1994).

(gemäß dem jeweiligen Stand des wissenschaftlich-technischen Wissens) verfügen muss und die gewonnenen Daten strikten Schutzvorkehrungen unterliegen. In Belgien erhalten nur ausgewählte Institute eine Lizenz für Gentests.

4.4 Zulassung genetischer Tests

In der Diskussion um die genetische Diagnostik spielen die Möglichkeiten einer Eingrenzung des Testangebotes auf solche Tests, die als medizinisch sinnvoll oder unter ethischen Gesichtspunkten als vertretbar angesehen werden können, eine entscheidende Rolle. Forderungen, in einem Katalog rechtlich festzulegen, welche Tests in welchem Anwendungskontext zulässig bzw. unzulässig sind, wird entgegengehalten, dass es gemäß dem Recht auf informationelle Selbstbestimmung freie Entscheidung jedes Einzelnen bleiben müsse, was er über seine eigene genetische Konstitution erfahren möchte. Zudem könne die Erstellung eines Kataloges von z.B. im Rahmen der pränatalen Diagnostik zulässigen Tests als eine ethisch fragwürdige Normierung dessen angesehen werden, welche Krankheiten oder Behinderungen als gesellschaftlich zumutbar und welche gesellschaftlich als zu vermeiden gelten.

Eine solche Formulierung lässt aber weitgehend offen, was unter dem Begriff "Gesundheitszwecke" zu fassen ist. Eine Präzisierung, z.B. inwiefern die Durchführung genetischer Analysen im Rahmen des Abschlusses von Versicherungsverträgen noch durch das Kriterium gedeckt ist, erscheint geboten. Als Problem stellt sich auch generell, wie eine angemessene Abgrenzung zwischen
4. Regelungsbedarf und Regelungsmöglichkeiten

gesundheitsrelevanten und anderen genetischen Merkmalen möglich sein soll. Die Möglichkeiten genetischer Diagnostik umfassen bereits jetzt ein breites Spektrum von Merkmalen, das von eindeutig gesundheitsrelevanten (Krankheiten oder Dispositionen) bis hin zu solchen Merkmalen reicht, die dies eindeutig nicht sind (Vaterschaftsbestimmung, Personenidentifikation). Schon beim Begriff der Behinderung kann in Frage gestellt werden, ob es sich im eigentlichen Sinne um eine Krankheit handelt. Es besteht die Gefahr, dass durch zunehmende Verbreitung von genetischen Testmöglichkeiten sich die Grenze zwischen Krankheit und Gesundheit sukzessive auflöst - dass so zusagen die bloße Testmöglichkeit das genetische Merkmal bereits als "krank" normiert (Lanzerath/Honnefelder 1998).

Eine Steuerung könnte z.T. über die Krankenkassen erfolgen, indem diese die Kosten nur für solche Tests übernehmen, die einer erfolgreichen wissenschaftlichen Überprüfung und medizinischen Bewertung unterzogen worden sind. Geht man aber davon aus, dass die Durchführung genetischer Tests in Zukunft schon zu geringen Kosten möglich ist, und stellt man die Notwendigkeit auch der Einbeziehung weitergehender ethischer und gesellschaftlicher Aspekte in die Bewertung genetischer Diagnosemöglichkeiten in Rechnung, erscheint die Einrichtung einer zentralen Kommission, die für die Zulassung neuer Testangebote zuständig ist, erwägenswert.

Bereits 1993 wurde vom Nuffield Council on Bioethics in Großbritannien in einem Bericht über die ethischen und sozialen Aspekte genetischer Testverfahren die Einrichtung eines zentralen Gremiums empfohlen, das genetische Screening-Programme beurteilen und ihre Durchführung kontrollieren sollte. Drei Jahre später, 1996, richtete die britische Regierung zwei Kommissionen ein, die sich mit der Bewertung neuer Verfahren in der Humangenetik befassen sollen, das Human Genetics Advisory Committee (HGAC) und das Advisory

Die Task Force on Genetic Testing der amerikanischen National Institutes of Health hat die Einberufung eines Advisory Committee on Genetic Testing beim Secretary of Health and Human Services (HHS) gefordert. Die Aufgabe dieses Komitees wird folgendermaßen beschrieben: "The Committee would [...] ensure that (a) the introduction of new genetic tests into clinical use is based on evidence of their analytical and clinical validity, and utility to those tested; (b) all stages of the genetic testing process in clinical laboratories meet quality standards; (c) health providers who offer and order genetic tests have sufficient competence in genetics and genetic testing to protect the well-being of their patients; and (d) there be continued and expanded availability of tests for rare diseases" (Holtzman/Watson 1997, S. 7). Dem Vorschlag der Task Force zufolge sollten in diesem Gremium sowohl Mediziner und Humangenetiker als auch die Industrie und Konsumentenorganisationen vertreten sein.
IV. Gentests in der Arbeitsmedizin

1. Stand und Perspektiven der Nutzung

IV. Genests in der Arbeitsmedizin

1.1. Bioeffekt-Monitoring und Ex-post-Analysen

Gegenwärtig gibt es zahlreiche Bestrebungen seitens der Forschung, die Möglichkeiten des klassischen Biomonitoring durch die Erfassung von biologischen Wirkungen gentoxischer bzw. krebserzeugender Arbeitsstoffe wesentlich zu erweitern und beruflich bedingte Krebserkrankungen differenzierter zu bekämpfen.

Zu nennen ist schließlich noch der **Nachweis onkogener Proteine und spezifischer Gen-Mutationen.**

Insgesamt erwartet man in der Zukunft verbesserte Erkenntnisse über die Wirkungsweise gentoxischer Noxen und damit Hilfe für die Früherkennung und die Kontrolle des Umgangs mit kanzerogenen Stoffen auf drei **Indikationsfeldern** (Argos 1999, S. 187):

- **Einstufung von Gefahrstoffen** als erbgutverändernd im Zuge der primären Prävention
- **Bewertung der externen und internen Belastung** durch gentoxische Stoffe im Rahmen einer **Expositionskontrolle**
- **Beanspruchungskontrolle** durch den Nachweis von Veränderungen des genetischen Materials

1.2. Prädiktive Tests auf Dispositionen

Während die Charakterisierung von Enzympolymorphismen vor allem in der Pharmakologie (Pharmakogenetik) wachsendes Interesse findet, weil diese Einfluss auf die Wirksamkeit eines Arzneimittels bzw. auf das Risiko des
IV. Gentests in der Arbeitsmedizin

– Neue Stoffe, z.B. in der Fertigungstechnik (Klebemittel, Verbundwerkstoffe) könnten rechtzeitig als für bestimmte Personengruppen gesundheitsgefährdend erkannt und eventuell eliminiert oder neutralisiert werden.
1. Stand und Perspektiven der Nutzung

– Durch das verbesserte Verständnis der pathogenen Mechanismen in der Folge der Anwendung molekulargenetischer Verfahren könnten bislang unbekannte Risiken erkennbar werden.
– Es könnten sich neue Ansätze für die Primär- und Sekundärprävention auf der Grundlage von Erst-, Kontroll- und "nachgehenden" Untersuchungen ergeben.
– Die Arbeitsmedizin könnte mehr als bisher zur Kompensation eingetretener Schäden im Rahmen von Entschädigungsregelungen beitragen, da sich neue Möglichkeiten für die retrospektive Expositionsbeurteilung ergeben.

Forschungsbedarf, Entwicklungsperspektiven

• Das generelle Wissen über die genetische Ausstattung des Menschen (Krankheiten und Prädispositionen), vor allem auch über die Struktur und Rolle von Polymorphismen, nimmt im Zuge der intensiven Erforschung des menschlichen Genoms rapide zu, und immer mehr Biomarker - etwa für Krebs - werden entdeckt bzw. immer neue Gensonden entwickelt.
• Neue Testtechnologien werden entwickelt, die auch der Arbeitsmedizin neue Anwendungsoptionen erlauben könnten: beispielsweise DNA-Chip-Technologien oder schnellere Sequenzierautomaten.
• Der verstärkte Aufbau von internationalen Forschungsnetzwerken im Bereich von Umweltmedizin, Toxikologie und molekularer Epidemiologie
könnte der Arbeitsmedizin neue Impulse geben und ihr Methodenarsenal bereichern.

So wurde etwa jüngst ein Forschungsnetzwerk der "European Science Foundation" (ESF) gegründet, dem neben Arbeitsmedizinern z.B. auch Krebsforscher und Toxikologen aus Deutschland, Dänemark, Großbritannien, Finnland und Norwegen angehören. Zu den zentralen Zielen des dort anvisierten "risk assessment" gehören

- "a better understanding of host factors affecting individual risk,
- more accurate estimations of increased risks of certain exposed sub-populations".

Hervorgehoben werden dabei insbesondere Untersuchungen zur individuellen Suszeptibilität für chronische Erkrankungen. Diese zielen auf:

- "the genetic basis for the phenotypic expression of the enzymes involved in the detoxification of environmental toxins or protecting the cells against toxicant induced cellular stress [...]",
- new functionally significant genetic polymorphisms in enzymes involved in the protection of cells against toxic compounds [...]",
- the polymorphic distribution of the enzymes in different European populations in order to justify epidemiological meta-analyses to estimate the populations' risk imposed by a specific or combinations of genotype" (Proposal for an ESF Network 1998, nach Argos 1999, S. 219).

Forschungen zur genetischen Variabilität als Basis für individuell unterschiedliche Empfindlichkeiten werden vor allem auch in den USA und in Japan betrieben; in den USA ist dafür mit der Initiierung eines Environmental Genome Project neuerdings ein spezieller institutioneller Rahmen geschaffen worden (Guengerich 1998).

2. Positionen in der Diskussion

Gesellschaft, insbesondere die Medizinerinnen und Mediziner, müssen dazu beitragen, dass Menschen nicht in die Arbeitslosigkeit hineingeboren werden, weil nach menschlichen Maßstäben ihr Genom bei bestimmten Arbeiten die Möglichkeit zu einer Berufskrankheit beinhaltet" (Argos 1999, S. 211 f.). Diese Vorstellungen entsprechen weitgehend denen des DGB vom Anfang der 90er Jahre, wo ebenfalls die Besorgnis geäußert wurde, dass "Arbeitnehmerauslese" vor "Verbesserung der Arbeitsplatzbedingungen" gehen könnte.

Ein kritischer Beobachter - der Mediziner Wolfgang Huber - hält es angesichts möglicher Missbräuche für erforderlich, sicherzustellen, dass durch genetische Tests

- der Schutz der Arbeitnehmer vor gefährlichen Arbeitsstoffen nicht zu einem Schutz der Unternehmer vor anfälligen Arbeitnehmern wird und
- keine Gründe für Nichteinstellung, Kündigung oder Abqualifizierung geliefert werden (Huber 1994, S. 113).

Die genannten Befürchtungen müssen gegen die bereits erwähnten grundsätzlichen Vorteile genanalytischer Untersuchungen gerade für den Arbeitnehmer...
selbst abgewogen werden, auch wenn - insbesondere in Zeiten hoher Arbeitslosig-
kheit das Recht auf Wissen und insbesondere die grundsätzliche Entscheidungs-
freiheit des Arbeitnehmers, in eine Analyse einzuwilligen oder nicht, sehr fragwürdig ist.

Betrieblichen Interessen kann durch genetische Tests insofern gedient sein, als festgestellt werden könnte, ob der Arbeitnehmer den Arbeitsplatzanforderungen gewachsen ist oder gegenüber möglichen Expositionen mit Schadstoffen ein erhöhtes Risiko trägt und ob er dritte Personen (Kollegen, Kunden) durch genetisch bedingte Fehlleistungen in Gefahr bringen könnte (Wiese 1994, S. 39).

3. Regelungsbedarf

Da eine Anwendung von Gentests im engeren Sinne in der Arbeitsmedizin derzeit nicht stattfindet, kann von einem hierauf bezogenen akuten Regelungsbedarf nicht gesprochen werden. Wie gesagt, könnte aber in Zukunft die Attraktivität von (prädiktiven) Gentests für die Arbeitsmedizin zunehmen. Möglicherweise wächst auch allgemein die Bereitschaft, sich testen zu lassen, wenn Gentests erst einmal in anderen gesellschaftlichen Bereichen üblich geworden sind.

Orientierungspunkte bei einer Prüfung des Regelungsbedarfs

- Vorrang des objektiven Arbeitsschutzes vor der Selektion von Arbeitnehmern bzw. Stellenbewerbern
- Sicherung der (technischen) Testqualität (Sensitivität, Spezifität)
- Sicherung der Qualität der Testdurchführung (Zulassungspflicht, Zertifizierung)
- Sicherstellung einer informierten und freiwilligen Zustimmung der Testpersonen im Rahmen einer ausreichenden Beratung
- Schutz der erhobenen Daten, einschließlich Maßnahmen gegen deren zweckändernde Nutzung der Daten ohne Einwilligung der Testperson
- Gewährleistung, dass jede betroffene Person die von ihr erhobenen Daten auf ihre Richtigkeit hin überprüfen sowie sie gegebenenfalls korrigieren kann
- Untersuchung und qualifizierte Betreuung durch einen hierfür besonders ermächtigten Arzt
- Abkopplung der Testpraxis von der betriebsärztlichen Versorgung

3.1 Aspekte einer Regelung

Diese vielschichtige Konstellation führt zu der Frage, ob ein fairer Interessenausgleich denkbar ist. Eine mögliche Regelung hätte dabei die zentralen Aspekte der augenblicklichen Rechtslage zu berücksichtigen:

Fragerecht des Arbeitgebers, Mitteilungspflicht des Arbeitnehmers

Der Arbeitgeber hat das Recht, Informationen über den Bewerber oder Arbeitnehmer zu gewinnen. Dieses Fragerecht beinhaltet grundsätzlich Fragen nach
dessen Gesundheit, soweit sie für den Arbeitsplatz relevant sind und die gegenwärtige Eignung betreffen. Eine augenblicklich bestehende oder in absehbarer Zeit zu erwartende Arbeitsunfähigkeit wäre dementsprechend ebenso anzugeben wie eine Ansteckungsgefahr für Arbeitskollegen. Lässt aber der Gesundheitszustand beim Abschluss des Arbeitsvertrages keine Einschränkungen seiner Arbeitskraft erwarten, braucht der Arbeitnehmer auf keine weitergehenden Risiken hinzuweisen, und genetische Dispositionen für mögliche zukünftige Beeinträchtigungen wären nicht zu offenbaren.

Duldung genetischer Untersuchungen bei Einstellungsuntersuchungen?

Das Verlangen des Arbeitgebers, bei der Anbahnung eines Arbeitsverhältnisses Einstellungsuntersuchungen durchzuführen, ist Ausprägung des dem Arbeitgeber zustehenden Fragerechts. Daher sind an Einstellungsuntersuchungen die gleichen Anforderungen zu stellen, die auch für Fragen des Arbeitgebers nach gesundheitlichen Daten gelten. Dabei kann eine Einstellungsuntersuchung nur mit Zustimmung des Arbeitsplatzbewerbers erfolgen. **Dessen Einwilligung ist aber auch hier nur so weit möglich, wie das Fragerecht des Arbeitgebers reicht.**

Teilte man die vorangegangene Einschätzung, dürfte der Arbeitgeber vom Bewerber mit dessen Zustimmung die Durchführung genetischer Analysen verlangen, soweit die angestrebten Befunde für das in Aussicht genommene Beschäftigungsverhältnis relevant sind. **Erforderlich ist darüber hinaus eine informierte Zustimmung.** Eine allgemeine oder formularmäßig erklärte Bereitschaft des Bewerbers zu einer Einstellungsuntersuchung kann als nicht ausreichend angesehen werden. Problematisch ist diese Rechtslage insofern, als
IV. Genteests in der Arbeitsmedizin

der Arbeitsplatzbewerber faktisch keine Möglichkeit hat, sich dem Begehren des Arbeitgebers zu entziehen. Die Ablehnung einer Untersuchung wird den Arbeitgeber vermutlich zur Nichteinstellung veranlassen.

Eignungs- und/oder Tauglichkeitsuntersuchungen sowie spezielle Vorsorgeuntersuchungen nach Abschluss eines Arbeitsvertrages

Solche Untersuchungen werden auf der Grundlage einer Rechtsnorm in Fällen durchgeführt, bei denen Tätigkeiten mit außergewöhnlichen Unfall- oder Gesundheitsgefahren für Arbeitnehmer selbst oder für Dritte (z.B. bei Flugzeug- und Lokomotivführern) verbunden sind.

Ergeben sich entsprechend gewichtige ärztliche Befunde, darf der Arbeitgeber die betreffenden Arbeitnehmer an dem Arbeitsplatz nicht beschäftigen. Rechtsgrundlagen für Vorsorgeuntersuchungen finden sich z.B. in § 18 des Bundes-Seuchengesetzes, § 28 der Gefahrenstoffverordnung und § 10 der Unfallverhütungsvorschrift "Arbeitsmedizinische Vorsorge" (VBG 100).

Neben dem Schutz der Gesundheit des Arbeitnehmers selbst oder auch dem Schutz Dritter dienen Arbeitsschutzvorschriften wie die Gewerbeordnung oder das 3. Buch der Reichsversicherungsordnung (Unfallversicherung) dazu, mögliche Haftpflichtrisiken des Arbeitgebers (§ 618 Abs. 3 i.V.m. §§ 842 bis 846 BGB) oder Risiken der Solidargemeinschaft zu vermindern.

Umgang mit personenbezogenen Daten

Trotz der materiellen Norm der ärztlichen Schweigepflicht wird häufig ein Missbrauch genetischer Daten innerhalb und außerhalb des Betriebes befürchtet. Da bei genetischen Untersuchungen sensible personenbezogene Daten erhoben werden, sind die schützenswerten Belange von Individuen in besonderer Weise berührt. Zum verfassungsrechtlich geschützten Persönlichkeitsrecht gehört es, dass der Einzelne grundsätzlich selbst über die Preisgabe und Verwendung seiner persönlichen Daten entscheiden darf. Das Recht auf informationelle Selbst-
bestimmung impliziert aber auch, dass niemandem die Möglichkeit, sich testen zu lassen, verweigert werden darf, sofern er dies wünscht. An eine Nutzung von Gentests sind also in dieser Hinsicht besondere und bereichsspezifische Anforderungen zu stellen und ein hohes Schutzniveau anzustreben, da sich bereits bestehende Probleme beim Umgang mit medizinischen Daten im Betrieb durch das Anfallen von personenbezogenen sensiblen Daten im Rahmen von genetischen Untersuchungen sich verschärfen bzw. neue Probleme entstehen könnten.

3.2 Regelungsoptionen im Einzelnen

Verbot

Würden durch eine gesetzgeberische Maßnahme Erkenntnismöglichkeiten der Medizin zum Schutz gefährdeter Arbeitnehmer verbaut, widersprüche dies u.U. der Schutzpflicht des Staates. Ein generelles Verbot genetischer Tests würde die Möglichkeit und Chancen ihrer Nutzung am Arbeitsplatz begrenzen und wissenschaftlich-technische Fortschritte eng reglementieren. Es **bedürfte also einer besonders sorgfältigen Begründung für ein pauschales Verbot**. Der bloße Hinweis auf potenzielle Risiken und Gefahren des Missbrauchs wäre zur Rechtfertigung kaum geeignet.

Verbot mit Vorbehalt

IV. Gen tests in der Arbeitsmedizin

Präzisierung des Fragerechts des Arbeitgebers

Eine zentrale Regelungsoption wäre, eine Begrenzung des Fragerechts in das BGB (§ 611 ff.) aufzunehmen. Dabei könnte festgelegt werden, welche Befunde erhoben werden dürfen und welche nicht. So weit Untersuchungen hiernach unzulässig sind, dürfen auch die Ergebnisse früherer Untersuchungen nicht, auch nicht mit Zustimmung des betroffenen Arbeitnehmers, herangezogen und verwertet werden.

Regelung obligatorischer Eignungs-/Vorsorgeuntersuchungen

Erachtet man eine Nutzung genetischer Tests am Arbeitsplatz fallweise grundsätzlich für sinnvoll und geboten, käme eine Reihe von Überlegungen zum Tragen, die die Frage der Zulässigkeit bzw. die Forderung einer zurückhalten- den Nutzung betreffen.

- Es könnte festgelegt werden, dass Erstuntersuchungen und Vorsorgeuntersuchungen genetische Dispositionen nur erfassen dürfen, soweit dies in einer Rechtsnorm ausdrücklich vorgesehen ist. Durch eine solche Regelung wäre sichergestellt, dass eine Untersuchung genetischer Dispositionen nur dann erfolgen kann, wenn der Gesetzgeber eine solche Untersuchung aufgrund der ihm obliegenden Fürsorgepflicht für erforderlich hält.
- Dabei wären begrifflich klar diejenigen Befunde zu benennen, die für zulässig/unzulässig erachtet werden. So wäre denkbar, nur Untersuchungen zuzulassen, die auf die Diagnose symptomatisch in Erscheinung getretener oder unmittelbar bevorstehender Erkrankungen mit Arbeitsplatzrelevanz gerichtet sind. Ferner könnte bestimmt werden, dass die zur Untersuchung genetischer Dispositionen ermächtigende Spezialvorschrift auch die Art der einzusetzenden Testverfahren regelt. Damit wäre sicherzustellen, dass nur wissenschaftlich anerkannte Testmethoden eingesetzt werden.
- Ferner könnte festgelegt werden, dass jede Untersuchung aufgrund des Fragerechts des Arbeitgebers der informierten Einwilligung des Arbeitnehmers bedarf. Dies gilt auch für die Weitergabe der Untersuchungsergebnisse.
3. Regelungsbedarf

Bereichsspezifischer Datenschutz

Sicherzustellen wäre, dass genetische Daten nicht missbräuchlich verwendet werden. Zwar greifen hier bereits ärztliche Schweigepflicht und das Bundesdatenschutzgesetz. Es wäre aber durchaus erwägenswert, eine bereichsspezifische Regelung für das Arbeitsrecht anzustreben.
V. Gentests in privaten Versicherungen

Die **potenzielle Bedeutung** von DNA-Diagnoseverfahren zur präsymptomatischen Feststellung von Krankheiten und Anfälligkeit für Versicherungen, liegen auf der Hand: Die Ergebnisse könnten als **Grundlage für eine verbesserte Risikoprüfung vor einem Vertragsabschluss** sowohl zu einer **risikoadäquateren Prämienkalkulation** als auch zur **Risikoselektion** beitragen: So wäre beispielsweise denkbar, gefährdete Personen auszuschließen oder deren Prämien höher anzusetzen, aber auch, so genannten "guten Risiken" Sonderkonditionen einräumen. Darüber hinaus könnten genanalytische Untersuchungen auch **nach Vertragsabschluss** eine Rolle spielen, zum Beispiel im Hinblick auf die Übernahme diagnostischer oder therapeutischer Leistungen durch Krankenversicherer, die Verpflichtung zur Teilnahme an Früherkennungsuntersuchungen oder eine individuelle Betreuung von Versicherungsnehmern im Rahmen eines "professionellen Gesundheitsmanagements".

1. Zurückhaltung bei den Versicherern

In Deutschland kommen genetische Diagnoseverfahren in der Versicherungsmedizin - soweit bekannt - nicht zum Einsatz. Etwaige konkrete Pläne - so das Bundesaufsichtsamt für das Versicherungswesen (BAV) - seien nicht bekannt. Dies gilt nicht nur für die gesetzlichen Krankenkassen, die ohnehin keine Risikoprüfungen durchführen, sondern auch für die privaten Kranken- und Lebensversicherungen. Weder verlangen private Versicherer die Vorlage eines Gentests im Rahmen der Risikoprüfung als Vorausbedingung für den Abschluss einer Versicherung, noch wird explizit nach anderweitig bereits vorliegenden genana-

Als zentrale Gründe dafür, dass Versicherungsunternehmen auf eine routinemäßige Durchführung von Gentests bzw. eine gezielte und ausdrückliche Nachfrage nach bereits durchgeführten Tests derzeit verzichten, werden in der Regel vor allem deren mangelnde Aussagekraft und ein mangelndes Interesse an einer weit gehenden Risikodifferenzierung genannt.

Mangelnde Aussagekraft genetischer Tests

Fehlende Attraktivität einer weit gehenden Risikodifferenzierung

Gegen die Auffassung, der Einsatz genetischer Diagnosemöglichkeiten sei für Versicherungen sinnvoll, wird vor allem vorgebracht, dass eine weit gehende Individualisierung von Risiken ökonomisch nicht attraktiv sei. Eine genaue Kenntnis der Erkrankungswahrscheinlichkeit des Einzelnen und eine entsprechende "Aufsplittung der Versichertengemeinschaft nach unterschiedlichen Risikomerkmalen" würde das 'Gesetz der großen Zahl' unanwendbar machen, da
1. Zurückhaltung bei den Versicherern

Die relevanten Bestände zu klein" würden und insofern den Versicherungsge-
danken letztlich "aus den Angeln heben" (Sahmer 1995, S. 7 f.). **Dieses Argu-
ment ist allerdings umstritten.** Andere vertreten die Auffassung, dass "das Erreichen einer Kollektivgröße" in der Tat für den Ausgleich von Schadens-
schwankungen von Bedeutung sei. Es sei jedoch keineswegs eine zwangsläufige Folge der Anwendung genetischer Tests in der Krankenversicherung, dass "tat-
sächlich so viele unterschiedliche (Teil-)Kollektive aufgebaut werden müssten, dass die Gesetze der großen Zahl nicht mehr griffen" (Berberich 1998, S. 284).

Des Weiteren wird argumentiert, dass Versicherer daran interessiert seien, möglichst viele Gesellschaftsmitglieder zu versichern. Eine zu starke Risiko-
segmentierung - z.B. durch Gentests - führe dagegen dazu, dass "Versicherungsschutz nur noch diejenigen suchen würde, die mit Krankheiten zu rechnen ha-
ben; diesen aber müsste ein umsichtig kalkulierender Versicherer Prämien in solcher Höhe berechnen, dass die Betroffenen im Ergebnis ihre eigenen Krankheitskosten zu finanzieren hätten" (Sahmer 1995, S. 7). Auch hier lassen sich Zweifel anmelden, ob diese Annahmen stimmig sind (Berberich 1998, S. 284 f.).

Folgt man aber dieser Logik, ist es konsequent, **dass eine Untersuchungs-
verpflichtung des Antragstellers für genetische Tests** von Seiten privater Krankenversicherer **nicht ernsthaft erwogen wird** (Sahmer 2000, S. 50). Von Ausnahmefällen abgesehen wird auch bereits jetzt "weder ein umfassender ge-
sundheitlicher 'Check-up' verlangt noch ein Aids-Test oder die Durchführung gezielter Vorsorgeprogramme, etwa zur Früherkennung von Krebs und Herz/Kreislaufkrankungen oder zur Feststellung von Blutzucker, Bluthoch-

Auch im Bereich der Lebensversicherungen erfolgen zum gegenwärtigen Zeitpunkt rund 99% aller Abschlüsse in Deutschland ohne eine vorherige ärzt-
liche Untersuchung. Allerdings entbindet der Versicherungsnehmer seine Ärzte von der Schweigepflicht.

Eine Stellungnahme der deutschen Versicherungswirtschaft zufolge sei "momentan und in absehbarer Zukunft wegen

- der geringen gegenwärtigen und nicht eindeutig absehbaren zukünftigen Bedeutung von Gentests,
V. Gentests in privaten Versicherungen

– den möglichen Einflüssen von Gentests auf die Personenversicherung,
– der ablehnenden Haltung gegenüber der Gentechnologie innerhalb der Bevölkerung und des sich daraus ergebenden politischen Drucks sowie
– der Schwierigkeit, Gentests definitorisch einzugrenzen",

nicht beabsichtigt, Gentests als Mittel der Risikodifferenzierung einzusetzen (nach Argos 1999, S. 252). Es wird allerdings zugleich deutlich gemacht, dass man ein Verbot, nach Gentests zu fragen, ablehnt und sich insofern die Tür offen halten möchte.

2. Mögliche zukünftige Entwicklung

– der Anzahl und der Verfügbarkeit von Tests,
– der Anzahl der in der Bevölkerung vorhandenen, für die Versicherungswirtschaft bedeutsamen Krankheiten,
– der Einfachheit der Handhabung genetischer Tests,
– der Nachprüfbarkeit und
– der prädiktiven Qualität genetischer Tests (Berberich 1998, S. 1193).
Unter der Voraussetzung, dass künftig billige, leicht handhabbare und leistungsfähige Gentests, insbesondere diagnostische Testverfahren für multifaktoriell bedingte, häufig vorkommende Erkrankungen (auch allgemein) zur Verfügung stehen und genutzt werden, wird es für denkbar gehalten, dass Versicherer genanalytische Verfahren zur Abwehr einer Antiselektion oder für eine risikoadäquate Prämienkalkulation einsetzen.

Gefahr einer Antiselektion durch Gentests - wahrscheinlich oder unwahrscheinlich?

Die Gefahr ist gering

- Es fehlen nach wie vor aussagekräftige Tests für komplexe Krankheiten.
- Die bisherige Risikoprüfung durch Familienanamnese reicht aus.
- Die Nachfrage nach Gentests durch die Bevölkerung wird nicht signifikant werden.

Die Gefahr ist real

- Aufgrund verstärkter Forschungs- und Entwicklungsbemühungen wird die Pharmaindustrie mittelfristig auch Tests für komplexe Krankheiten anbieten.
- Private Labors werden allgemein zugängliche und anonyme Tests für alle offerieren, die aktiv von Privatpersonen genutzt werden.
- Im Zuge weitergehender Veränderungen im Gesundheitswesen gewinnt die Idee einer selbstverantwortlichen Zukunftsplanung und gesundheitlicher Autonomie an Boden und führt zu einer wachsenden Akzeptanz von Gentests in der Bevölkerung.

Abwehr einer Antiselektion

Entsprechende Bedingungen vorausgesetzt, wird es für denkbar gehalten, dass Versicherungsbewerber in Kenntnis ihrer Dispositionen und gesundheitlichen Risiken durch ihren Informationsvorsprung die Option hätten, entweder als "gutes Risiko" günstigere Bedingungen zu fordern oder als "schlechtes Risiko" diesen Umstand zu verschweigen und sich zu normalen Bedingungen versichern.

Risikoadäquatere Prämienkalkulation und Risikoselektion

Unterstellt man die angesprochenen geänderten Rahmenbedingungen, könnten einzelne Versicherer versuchen, durch die Nutzung gendiagnostischer Methoden eine risikoadäquatere Prämienkalkulation oder eine effizientere Risikoselektion vorzunehmen in der Hoffnung, sich auf diese Weise einen Vorteil gegenüber der Konkurrenz zu verschaffen. In der Folge könnten sich andere Versicherer gezwungen sehen, nachzuziehen. Dieser mögliche Trend könnte dadurch verstärkt werden, dass der Versicherungsmarkt inzwischen europaweit offen ist und Versicherungsnehmer die Möglichkeit haben, Versicherungen in anderen Ländern zu den dort geltenden Bedingungen abzuschließen.

Wie schon bei der Frage nach der Gefahr der Antiselektion gehen auch bei der Einschätzung der Möglichkeit der hier diskutierten Perspektiven die Meinungen auseinander. Der Auffassung, der Einsatz gendiagnostischer Verfahren sei - auch auf absehbare Zeit - aus versicherungsmathematischen Gründen nicht sinnvoll, steht die Auffassung gegenüber, der Einsatz entsprechender Methoden verschaffe Versicherern zumindest kurzfristig einen ökonomischen Vorteil.

Insgesamt gesehen ist allerdings eine Entwicklung nicht auszuschließen, in der sich zum einen ein **Wettbewerbsdruck in der Versicherungswirtschaft** aufbaut, weil einzelne Versicherer versuchen, durch den Einsatz gendiagnos-
tischer Verfahren eine adäquate Prämienkalkulation bei unterschiedlichen Risikogruppen vorzunehmen und sich auf diese Weise einen Marktvorteil zu verschaffen. Zum anderen ist vorstellbar, dass die **Nutzung von Gentests durch Versicherungsinteressenten** die Versicherungswirtschaft zwingen könnte, genanalytische Verfahren zur Vermeidung von daraus resultierenden wirtschaftlichen Nachteilen zu nutzen. Beide Trends **könnten** sich gegenseitig verstärken und einen **weit verbreiteten Einsatz von Gentests in der Versicherungswirtschaft befördern**.

3. Mögliche Folgen einer verbreiteten Nutzung von Gentests

Eine verbreitete Nutzung von genetischen Diagnoseverfahren im Versicherungswesen berührte in unterschiedlicher Weise die Interessen der Beteiligten.

- **Versicherungsinteressenten**, die aufgrund einer Familienanamnese als nur zu ungünstigen Prämien bzw. als unversicherbar gelten, könnten durch Vorlage eines negativen Gentests in den Genuss einer normalen Versicherungsprämie gelangen; Versicherungsinteressenten mit negativem Gentest könnten Policen zu besonders günstigen Konditionen erwerben.

- **Versicherungsunternehmen**, die sich mit spezifischen Angeboten an die "guten Risiken" wenden und dabei die Durchführung eines Gentests bzw. die Offenlegung der Ergebnisse eines anderweitig durchgeführten Gentests zur Bedingung für den Abschluss eines Versicherungsvertrages machen, könnten sich einen Wettbewerbsvorteil verschaffen. Die Nutzung genetischer Daten der Versicherungsinteressenten hätte für Versicherungsunternehmen darüber hinaus den Vorzug, dass die Gefahr einer adversen Selektion vermieden werden kann.

Diesen möglichen Vorteilen steht jedoch eine Reihe problematischer Folgen gegenüber.

"**Genetische Diskriminierung**"

Befürchtet wird, dass die Nutzung von genetischen Testverfahren zu einer ungerechtfertigten Benachteiligung von Versicherungsinteressenten aufgrund ihres genetischen Status führen könnte.
Im Ergebnis würden sich Versicherungsinteressenten mit einem positiven Befund aus einem Gentest möglicherweise nur noch zu erhöhten Prämien oder mit einem begrenzten Risikoausschluss versichern können oder als unversicherbar gelten. Aufgrund des Datenaustausches zwischen den privaten Versicherungsgesellschaften hätten solche Versicherungsinteressenten vermutlich auch bei anderen privaten Versicherern keine Möglichkeit mehr, sich überhaupt oder zu annehmbaren Bedingungen zu versichern. Ohnehin **benachteiligte Personen würden** auf diese Weise **zusätzlich benachteiligt**.

Benachteiligungen dieser Art werden auch bei Lebensversicherungen befürchtet. Sie seien "ein essentieller Bestandteil privater Absicherung (Schutz der Familie, Altersvorsorge, Erwerb von Wohneigentum) und ein zentrales Instrument zur finanziellen Bewältigung von Alterslasten, so dass jemand, dem ein Lebensversicherungsvertrag verwehrt wird, unversehens mitsamt seiner Familie ins soziale Abseits geraten kann" (Schmidtke 1997, S. 147).

Als weitere Folge wird diskutiert, dass sich der Versicherungsmarkt dergestalt differenziert, dass eine Basisversorgung für alle angeboten wird, für deren Einkauf die vorherige Durchführung eines Gentests nicht verlangt wird. Wer sich darüber hinaus versichern will, muss sich dagegen einem Gentest unterziehen. Dies würde für eine Minderheit aufgrund ihres genetischen Status zumindest den **Ausschluss von der Möglichkeit einer mehr als minimalen Versicherungsversorgung** bedeuten (Argos 1999, S. 261).

Recht auf Nichtwissen, informationelle Selbstbestimmung

Eine erweiterte Nutzung genetischer Testverfahren durch Versicherer könnte möglicherweise auch das Recht auf Nichtwissen von Versicherungsinteressenten
und das Recht auf informationelle Selbstbestimmung unbeteiligter Dritter verletzen. Versicherungsinteressenten würden vor die Alternative gestellt, sich entweder Gentests zu unterziehen, deren Ergebnisse sie möglicherweise nicht zu erfahren wünschen, oder auf einen Versicherungsschutz zu verzichten. Die Problematik wird nicht zuletzt dadurch verschärft, dass Gentests Daten liefern, deren Informationsgehalt sich nicht auf das getestete Individuum beschränken können, sondern sich auch auf dessen Verwandte erstreckt.

Auswirkungen auf die Testpraxis

Befürchtungen richten sich auch auf durch eine intensive Nutzung von Gentests induzierte Auswirkungen auf die allgemeine Testpraxis. Problematisiert wird, dass die Bereitschaft, sich einem genetischen Test zu unterziehen, auch in solchen Fällen sinken könnte, in denen ein Test medizinisch sinnvoll wäre, da die Betroffenen fürchten, durch ein positives Testergebnis Nachteile zu erleiden. Einer britischen Umfrage zufolge antworteten 3 von 10 Befragten, sie würden im Falle einer Offenbarungspflicht einen Gentest nicht durchführen. Es
konnte gezeigt werden, dass die Angst, dann gegenüber Versicherern im Nachteil zu sein, Menschen davon abhalten kann, auch einen für sie sinnvollen Test durchzuführen (Argos 1999, S. 263).

Dass entsprechende Befürchtungen nicht unbegründet sind, zeigt das Beispiel des AIDS-Tests. In einem Bericht über "AIDS and Life Insurance" für das britische Gesundheitsministerium und die Association of British Insurers stellten die Berichterstatter fest, "that there were some people who were put off taking an HIV test because of the questions on insurance proposal forms. Although this was a relatively small percentage of the population, the study reported that this was a higher proportion of the population than would be desirable" (HGAC 1997, S. 17 f.). Genetische Berater und verschiedene Selbsthilfegruppen empfehlen bereits gegenwärtig, "die Versicherungen bereits vor dem Test geregelt zu haben" (Ärzte Zeitung, 22. Mai 1997). Um mögliche negative Auswirkungen positiver Gentest-Ergebnisse zu vermeiden, könnten Betroffene in Zukunft auch vermehrt von anonymen Testmöglichkeiten Gebrauch machen. Dies ist umso wahrscheinlicher, je mehr private Diagnoselabors entsprechende Dienstleistungen anbieten bzw. falls Testmöglichkeiten angeboten werden, die "über den Laden- tisch" frei verkäuflich sind (home-test-kits). Dadurch werden zahlreiche Fragen wie die nach dem Umgang der Einzelnen mit möglicherweise problematischen Daten oder die nach fehlender Beratung aufgeworfen.

Negative Folgen für die gesetzlichen Krankenkassen

Teilweise wird die Gefahr gesehen, dass die gesetzlichen Krankenkassen, die üblicherweise keine Risikoprüfung durchführen, die "schlechten" Risiken aufnehmen müssen, die bei den privaten Krankenversicherungen nicht mehr oder nur noch zu sehr hohen Prämien versicherbar sind. In der Folge - so wird befürchtet - müssten die Beiträge für die gesetzlichen Krankenversicherungen angehoben oder durch staatliche Mittel subventioniert werden. "Eine ausgeprägte Klassenmedizin wäre die Folge. Ein Sozialstaat muss ein aktives Interesse daran haben, eine solche Entwicklung zu verhindern - durch Versicherungs- aufsicht, Gesetzgebung und - im Hinblick auf einen grenzüberschreitenden Versicherungsmarkt - auch durch die Mitgestaltung international gültiger Normen" (Schmidtke 1997, S. 147).
Problematische Auswirkungen auf Versicherer

Lebensversicherungen, anders als Krankenversicherungen, werden - zumindest formal - freiwillig eingegangen und haben im Gegensatz zu Krankenversicherungen, bei denen es sich um Schadensversicherungen handelt, die Form einer Summenversicherung. Das heißt, dass in der Lebensversicherung grundsätzlich Versicherungssummen in beliebiger Höhe abgeschlossen werden können.

Daraus folgt, dass die Gefahr einer durch eine spezifische Nutzung genanalytischer Methoden durch Versicherungsinteressenten induzierten Antiselektion im Falle der Lebensversicherung wesentlich größer ist. **Als Konsequenzen werden bei entsprechend intensiver Nutzung steigende Prämien und die Entstehung eines sogenannten Sekundärmarktes befürchtet:**

4. Regulierungsfragen und -modelle

Vor dem Hintergrund dieser Regulierungsmodelle und unter Berücksichtigung der Diskussion in Deutschland lassen sich idealtypisch drei Regelungsoptionen unterscheiden (Argos 1999, S. 271 ff.):

- Die erste Option besteht darin, die Nutzung genanalytischer Untersuchungen im Versicherungswesen zuzulassen und es Versicherungsunternehmen zu ermöglichen, die Durchführung eines Gentests vom Antragsteller vor Vertragsabschluss zu verlangen bzw. einen solchen vor Vertragsabschluss routinemäßig selbst durchzuführen.
- Eine zweite Option würde Versicherungsunternehmen nicht nur verbieten, vor Vertragsabschluss einen Gentest zu verlangen, sondern auch ausschließen, dass ein Versicherungsinteressent die Resultate aus einem anderweitig gemachten Test der Versicherung gegenüber offen legen darf.
- Die dritte Option sieht eine eingeschränkte Nutzung genetischer Informationen, die von Gentests stammen, durch Versicherer und Versicherungsinteressenten vor.

Jede dieser Optionen brächte zugleich Vor- und Nachteile für die unmittelbar Beteiligten mit sich.
Option 1: Unbegrenzte Nutzung

Eine Regelung, die Versicherern die uneingeschränkte Möglichkeit der Nutzung genetischer Daten der Versicherungsinteressenten erlaubt, hätte zunächst die wahrscheinliche Folge, dass, bedingt durch das Informationsungleichgewicht zwischen Versicherer und Versicherungsinteressenten, die Gefahr einer adversen Selektion für die Versicherer vermieden werden kann. Diese wären ferner prinzipiell in die Lage versetzt, zu einer risikoadäquateren Prämienkalkulation bzw. zu einer effektiveren Risikoselektion zu gelangen.

Erwartet wird aber auch, dass eine Freigabe der Nutzung genetischer Daten durch Versicherer Nachteile für die Versicherten nach sich ziehen könnte. Diese Bedenken richten sich einmal auf die bereits angesprochenen Gefahren einer unangemessenen sozialen Härte und einer Verletzung des "Rechts auf Nichtwissen" von Versicherungsinteressenten sowie auf die möglichen negativen Auswirkungen einer Freigabe auf die Testpraxis.

Darüber hinaus wird befürchtet, dass sich ein "Zwei-Klassen-Versicherungswesen" herausbilden wird, innerhalb dessen die "schlechten" Risiken sich bei den gesetzlichen Krankenkassen sammeln. Insbesondere im Hinblick auf Lebensversicherungen wird befürchtet, dass die Gruppe der Menschen, die nur zu erhöhten Prämien versicherbar oder nicht mehr versicherbar sind, zunehmen wird.

Option 2: Grundsätzliches Verbot

Ein vollständiges Verbot der Nutzung von aus Gentests stammenden Informationen würde Versicherungsunternehmen nicht nur daran hindern, die Durchführung einer genetischen Untersuchung als Voraussetzung für einen Vertragsabschluss zu verlangen, sondern auch nach anderweitig vom Antragsteller durchgeführten Gentests zu fragen bzw. diese zu nutzen. Versicherungsinteressenten ihrerseits wären nicht verpflichtet, Ergebnisse aus früher gemachten Gentests offen zu legen.

Im Hinblick auf die **Interessen und Rechte der Versicherungen** stellt sich die Frage, ob ein solcher **Eingriff in deren Rechte** und die möglicherweise daraus folgenden Nachteile gerechtfertigt werden können.

Des Weiteren ist - im Hinblick auf die Krankenversicherung - zu fragen, ob ein generelles Verbot der Nutzung prädiktiver Gentests durch Versicherer an-
V. Gentests in privaten Versicherungen

Schließlich ist zu bedenken, dass ein generelles Nutzungs- und Frageverbot möglicherweise die Gefahr der Antiselektion erhöht. Diese stellte ein ökonomisches Problem für die Versicherungsunternehmen dar und könnte auf Dauer dazu führen, dass die Versicherungsunternehmen die Prämien anheben und damit die Versicherten belasten müssten.

Die Wahrscheinlichkeit und das Ausmaß der Gefahr einer Antiselektion, sind schwer einzuschätzen. Sie dürfte jedoch um so größer sein, je mehr leicht anwendbare und billige Testverfahren zur Verfügung stehen. Möglicherweise ließen sich die zuletzt genannten negativen Effekte durch Maßnahmen abmildern, zu denen ein Verbot, sich bei mehr als einer Versicherung zu versichern, ein Verbot eines Sekundärmarktes und eine konzertierte europäische Regulierung, die die Möglichkeit eines "Versicherungstourismus" ausschliesse, gehören könnten (Wambach 2000, S. 11).

Option 3: Eingeschränkte Nutzung

Der Status quo in Deutschland, dass Versicherer Gentests nicht aktiv nutzen, aber eine Verpflichtung der Versicherungsinteressenten besteht, im Rahmen der vorvertraglichen Anzeigepflicht durch Gentests festgestellte gefahrenerhebliche Umstände anzuzeigen, entspricht in etwa diesem Regelungsmodell (Argos 1999, S. 276 ff.). Die Senatskommission für Grundsatzfragen der Genforschung der DFG empfiehlt in ihrer Stellungnahme zur Humangenomforschung und genetischen Diagnostik, einen Gentest "nicht zur Voraussetzung für den Abschluss eines Versicherungsvertrages zu machen. Dabei bleibt die Verpflichtung des Antragstellers, auf konkrete Fragen bei Antragstellung bereits vorhandene Kenntnisse über schon eingetretene oder mit überwiegender

Im Rahmen dieses Modells lassen sich weitere Modifikationen vorstellen (Argos 1999, S. 277 f.):

- **Differenzierter Versicherungsschutz aufgrund von Ergebnissen aus genanalytischen Untersuchungen:** Zum einen könnten Versicherungsunternehmen Versicherungsverträge anbieten, die den Versicherungsinteressenten in die Versicherung aufnehmen, jedoch spezifische Erkrankungen aus dem Versicherungsschutz ausnehmen. Zum anderen könnten Versicherungsunternehmen Versicherungsinteressenten mit überdurchschnittlichem Risiko zu erhöhten Prämien versichern bzw. spezifische Bedingungen im Hinblick auf bestimmte Ergebnisse genanalytischer Untersuchungen anbieten.

- **Einführung einer obligatorischen Grundversicherung:** Eine solche Möglichkeit garantierte für alle einen einheitlichen Versicherungsschutz unabhängig von einer Risikoprüfung und damit auch unabhängig vom genetischen Status des Versicherungsaspiranten. Auf Basis dieser gewährleisteten

Von besonderer Bedeutung wäre bei dieser Regelungsoption die vorvertragliche Anzeigepflicht sowie ggf. § 41 des Versicherungsvertragsgesetzes.

Vorvertragliche Anzeigepflicht

Ein Versicherungsinteressent ist nach § 16 des Versicherungsvertragsgesetzes dazu verpflichtet, alle ihm bekannten und für die Annahmeentscheidung des Versicherers erheblichen Umstände anzuzeigen. Grundsätzlich muss es nach Auffassung der Versicherungswirtschaft "bei der im Versicherungsvertragsgesetz verankerten Pflicht zur Anzeige" auch von Erkenntnissen bleiben, die aus genomanalytischen Untersuchungen stammen, denen sich der Versicherungsinteressent anderweitig unterzogen hat (Sahmer 2000).

Anzeigepflichtig sind Erkenntnisse nach § 16 VVG dann, wenn diese "für die Übernahme der Gefahr erheblich sind". Ob überhaupt und wenn ja, welche Ergebnisse in der Folge welcher Methode (z.B. auf Phänotyp- oder auf Genotyp-Ebene) als gefahrenerheblich gelten ist umstritten. Sahmer zum Beispiel vertritt die Auffassung, dass solche Ergebnisse nur dann gefahrenerheblich im Sinne des § 16 VVG sind, "wenn sie konkrete physische oder psychische Anomalien manifestieren, die als Krankheiten oder Beschwerden entsprechend den im Versicherungsantrag gestellten Fragen zu bewerten sind. Die Feststellung lediglich von veränderten Genen oder Gengruppen dürfte in der Regel nicht relevant sein, da längst nicht jede solche Veränderung auch zu einer Erkrankung des betroffenen Genträgers führt" (Sahmer 1995, S. 7). Angesichts des Umstandes aber, dass in der Versicherungswirtschaft mit Wahrscheinlichkeiten für das Auftreten von Krankheiten gerechnet wird, ist auch die Auffassung plausibel,
dass ein gefahrenerhebliches genetisches Testergebnis dem Versicherer selbst dann angezeigt werden muss, wenn nicht sicher ist, ob die Krankheit ausbricht.

Angesichts dieser Unklarheiten und angesichts der Bedeutung des § 16 VVG für die Versicherungswirtschaft scheint es daher erforderlich, Fragen wie die nach "Erheblichkeit" oder "Sicherheit" zu klären oder zu präzisieren, ob sich die vorvertragliche Anzeigepflicht auch auf die Ergebnisse präsymptomatischer Tests und Tests auf genetisch bedingte Empfindlichkeiten bezieht (Argos 1999, S. 280 f.). Schließlich wäre denkbar im Einzelnen zu präzisieren, nach welchen "Krankheiten" gefragt werden darf.

§ 41 Versicherungsvertragsgesetz (VVG)

Verbraucherschutz

Angesichts der durchaus realen Gefahr einer erheblichen Benachteiligung von Versicherungsinteressenten und Versicherungsnehmern aufgrund ihrer genetischen Dispositionen ist die Einrichtung einer Diskriminierungsmeldestelle vorgeschlagen worden. Diese sollte die Aufgabe haben, Fälle von Diskriminierung zu sammeln und zu dokumentieren und die Betroffenen darin zu unterstützen, sich gegen eine unpfeire Behandlung aufgrund ihres genetischen Status zu wehren. Darüber hinaus könnte eine solche Stelle regelmäßig Bericht erstatten (Argos 1999, S. 281 f.).
Europäische Regelung

VI. Schlussfolgerungen

1. Perspektiven prädiktiver genetischer Diagnostik - Fazit

Zum jetzigen Zeitpunkt fällt es schwer, zu diesen globalen Szenarien eine nüchterne Einschätzung abzugeben. Auffällig in der Diskussion ist, dass auch diejenigen (Forscher, Mediziner, Humangenetiker), die grundsätzlich die sich mit der Humangenomforschung neu ergebenen medizinischen - nicht nur diagnostischen, sondern langfristig auch therapeutischen - Möglichkeiten hoch bewerten, zunehmend vor den Möglichkeiten des Missbrauchs und des "Wildwuchses" genetischer Diagnostik warnen (wie z.B. die DFG-Senatskommission in ihrer Stellungnahme zur Genomforschung). Auf der Basis des vom TAB gesehrteten Materials, der im Rahmen des Monitoring-Vorhabens vergebenen Gutachten wie auch der weiteren ausgewerteten Literatur, erscheinen uns folgende Aussagen die derzeitige Situation angemessen zu charakterisieren:

– Es konnte in den vergangenen Jahren eine Ausweitung der genetischen Diagnostik beobachtet
VI. Schlussfolgerungen

– Das Thema, das zurzeit die Diskussion um Chancen und Risiken genetischer Diagnostik vor allem bewegt, ist die prädiktive Diagnostik, d.h. die Diagnose einer Krankheitsdisposition vor Auftreten der ersten Symptome. Das Spektrum dessen, was unter diesen Begriff fällt, ist sehr weit und ohne definierte Übergänge: Unter den immer wieder diskutierten, exemplarischen Beispielen reicht es von der Diagnose spätmanifester, dominanter Krankheiten wie der Chorea Huntington über die Bestimmung des Brustkrebsrisikos bei Mutation des BRCA-Gens bis hin zur Analyse der ApoE-Allele als Indikatoren eines Alzheimer-Risikos. An beiden letztgenannten Beispielen können die Problematik und die Restriktionen einer genetischen Diagnostik
multifaktorieller Krankheiten deutlich gemacht werden (Kap. III.2.2 u. II.2.1).

- Zwei neue Anwendungsbereiche der DNA-Diagnostik außerhalb der Human-
genetik haben in den vergangenen Jahren vermutlich die stärkste Verbreitung und praktische Bedeutung in der angewandten Medizin gefunden, nämlich die verbesserte **Differentialdiagnostik von Infektionskrankheiten und von Tumor erkrankungen** (Kap. II.2.3). Diese Anwendung genetischer Diagnostik kann als eine Erweiterung allgemeiner medizinischer Krankheitsdiagnostik verstanden werden, die keine mit der Diagnostik von hereditären Merkmalen vergleichbaren Probleme aufwirft.

- In den vergangenen zwei Jahren wurden darüber hinaus als konkrete, öko-
 nomisch möglicherweise attraktive Anwendungen der Genomforschung besonders intensiv die **Pharmako- und Toxikogenomik** diskutiert, die genetisch bedingte Unterschiede im Stoffwechsel von Medikamenten und Giftstoffen untersuchen.

Weder die Hoffnungen noch die Ängste bezüglich einer **allumfassenden prädictiven genetischen Diagnostik** im Sinne einer Diffusion prädictiver Tests in die allgemeine medizinische Praxis sind durch die zum momentanen Zeitpunkt gegebenen realen Möglichkeiten substantiell begründet. Das heißt weder, dass eine Ausdehnung genetischer Tests - vermutlich zunächst in moderater Weise - nicht stattfinden wird, noch kann dies die derzeit schon bestehenden Probleme der Nutzung genetischer Diagnostik relativieren.

Für eine Ausweitung genetischer Tests spricht mit am stärksten der "technologische Druck", der auf Dauer von den wachsenden Anwendungsmöglichkeiten der DNA-Chip-Technologie und der damit gegebenen Vereinfachung und Verbilligung der Diagnostik ausgehen wird. Auch die wachsende Bedeutung des Präventionsgedankens im System der Gesundheitsversorgung könnte zusammen mit dem (auch bei Medizinern verbreiteten) Mangel an Wissen über Leistungen und Grenzen genetischer Diagnostik zu einer Testpraxis führen, die sich eher am Prinzip "Was diagnostizierbar ist, sollte auch diagnostiziert werden"
als an einer gründlichen medizinischen Abwägung des Nutzens eines Testangebotes für den Patienten orientiert.

2. Gendiagnostikgesetz?

Mit den Problemen der Gendiagnostik haben sich in den 80er Jahren und zu Beginn der 90er Jahre zahlreiche von Bundes- und Landesregierungen eingesetzte Kommissionen und Arbeitsgruppen befasst (vgl. TAB 1993), die auf die Chancen der Gendiagnostik, aber auch auf bestehende und abzusehende negative Entwicklungen hingewiesen haben. Von diesen Kommissionen wurde als wesentlicher Punkt, an dem sich eine Regelung des Einsatzes genetischer Diagnostik zu orientieren habe, die Herstellung von Rahmenbedingungen zur Gewährleistung individueller, informierter und autonomer Entscheidungen für oder gegen die Durchführung genetischer Diagnostik hervorgehoben. Eindeutige Empfehlungen für oder gegen eine gesetzgeberische Intervention wurden nicht ausgesprochen.

Wenn der Gesetzgeber auch aus den Debatten um eine gesetzliche Regelung des Einsatzes der Gendiagnostik Ende der 80er und zu Beginn der 90er Jahre nicht den Schluss gezogen hat, dass eine umfassende gesetzliche Regelung der Gendiagnostik unmittelbar angezeigt war, so hat er sich diesen Schritt dennoch vorbehalten und hierzu mit einer 1994 erfolgten Grundgesetzänderung die Voraussetzung geschaffen. Während bis dato die Regelung des Einsatzes der Gentechnik am Menschen in der Kompetenz der Länder lag, hat nunmehr der Bundesgesetzgeber die Möglichkeit, die Anwendung genetischer Diagnostik gesetzlich zu regeln. Die Zuständigkeit des Bundesgesetzgebers umfasst nach Artikel 74 Abs. 1 Nr. 26 GG "die künstliche Befruchtung beim Menschen, die Untersuchungen und die künstliche Veränderung von Erbinformationen sowie Regelungen von Transplantation von Organen und Geweben".

Von Seiten der Legislative wie auch der Exekutive scheint nun erneut die Notwendigkeit gesehen zu werden, die Entwicklungen in der Anwendung genetischer Diagnostik und die Frage einer gesetzlichen Regelung einer Prüfung zu unterziehen. Der beim Gesundheitsministerium eingerichtete Ethik-Beirat wird sich mit den neuen Möglichkeiten der Gendiagnostik sowie der In-vitro-Fertilisation und in diesem Rahmen auch mit der Präimplantationsdiagnostik befassen. Dabei wird auch hinsichtlich neuer prädiktiver Testmöglichkeiten die Frage des gesetzlichen Regelungsbedarf im Zentrum der Beratungen stehen. Mit jedem neu identifizierbaren vererbaren "Gen-Defekt", so die Bundesgesundheitsministerin anlässlich der konstituierenden Sitzung des Beirats im No-
November 1999, stelle sich "immer dringender die Frage, wie mit diesen Erkenntnismöglichkeiten umgegangen werden soll und ob und welcher Regelungsbedarf neben dem ärztlichen Standesrecht besteht".

DNA-Analysen in Strafverfolgung und Strafprozess

Der Einsatz molekulargenetischer Untersuchungen ist mit den durch das Strafverfahrensänderungsgesetz vom 17.03.1997 in die Strafprozessordnung eingefügten §§ 81e und 81f geregelt worden - nicht aber die Speicherung solcher Daten zur späteren Nutzung. Erlaubt sind seither molekulargenetische Untersuchungen an nach § 81a Abs. 1 StPO erlangten Körperzellen und Spurenmaterial bzw. nach § 81c Abs. 2 StPO gewonnenen Blutproben zur Feststellung der Abstammung oder zur notwendigen Klärung der Frage, ob Spurenmaterial von dem Beschuldigten oder Verletzten stammt.

- § 1 DNA-IFG, der als § 81g in die Strafprozessordnung (StPO) eingefügt wurde, sieht vor, dass Beschuldigten, bei einer "Straftat von erheblicher Bedeutung, insbesondere eines Verbrechens, eines Vergehens gegen die sexuelle Selbstbestimmung, einer gefährlichen Körperverletzung, eines Diebstahls in einem besonders schweren Fall oder einer Erpressung verdächtig" sind, Körperzellen zur Feststellung eines DNA-Identifizierungsmusters entnommen werden dürfen, sofern "Grund zu der Annahme besteht, dass gegen ihn künftig erneut Strafverfahren wegen einer der vorgenannten Straftaten zu führen sind". Damit dürfen Gendaten nicht mehr nur für erkennungsdienstliche Maßnahmen im Zusammenhang mit anhängigen Strafverfahren erhoben werden, sondern auch zur Vorsorge für eine künftige Strafverfolgung.

Nicht erfasst ist damit der auf Freiwilligkeit beruhende Einsatz der Analysetechnik, die mittlerweile weit verbreitet ist.

Im vorliegenden Bericht wurden einige dieser möglichen Folgen sowie entsprechender Regelungsbedarf und denkbare Regelungsoptionen, die bei der Beratung eines Gendiagnostikgesetzes zu berücksichtigen wären, diskutiert. Instruktiv für die Beratungen über ein deutsches Gendiagnostikgesetz können auch gesetzgeberische Aktivitäten in anderen Ländern sein. Eine gesetzliche Regelung besteht zurzeit in Österreich; in der Schweiz liegt ein Entwurf für ein "Gendiagnostikgesetz" vor.

Das österreichische Gentechnikgesetz

VI. Schlussfolgerungen

Begrenzung auf medizinische Zwecke und Arztvorbehalt

Die Eingrenzung der Zulässigkeit von Genanalysen auf medizinische Zwecke ist durch § 65 näher bestimmt. Danach darf die Durchführung genetischer Tests zudem nur auf Veranlassung eines Arztes erfolgen. Eine Genanalyse zu medizinischen Zwecken darf nach § 65 (1)

- "auf Veranlassung eines in Humangenetik ausgebildeten Arztes oder eines für das betreffende Indikationsgebiet zuständigen Facharztes zur
 a) Feststellung einer Prädisposition für eine Krankheit, insbesondere der Veranlagung für eine möglicherweise zukünftig ausbrechende Erbkrankheit, oder
 b) Feststellung eines Überträgerstatus oder
- auf Veranlassung des behandelnden Arztes oder diagnosestellenden Arztes zur
 a) Diagnose einer manifesten Erkrankung oder einer damit im Zusammenhang stehenden allfälligen künftigen Erkrankung, oder
 b) Vorbereitung einer Therapie und Kontrolle des Therapieverlaufs oder
c) Durchführung von Untersuchungen gemäß § 70 Z 1 durchgeführt werden."

Recht auf Nichtwissen und Datenschutz

Durch § 70 ist der Schutz von Verwandten betroffener Personen (Recht auf Nichtwissen) und der Schutz der untersuchten Person vor einer Weitergabe des Ergebnisses an Dritte gesetzlich geregelt. Die Einbeziehung von Verwandten der untersuchten Person, wenn dies zur Beurteilung des Ergebnisses nötig ist, oder in Fällen, in denen durch ein positives Testergebnis auf eine Betroffenheit von Verwandten geschlossen werden kann, darf nur durch die untersuchte Person selbst erfolgen.

Darüber hinaus ist die Verwendung genetischer Daten in § 71 geregelt. Eine Weitergabe genetischer Daten in nicht anonymisierter Form an Dritte darf nur mit ausdrücklicher Zustimmung der untersuchten Person erfolgen. Der untersuchten Person ist auf deren Verlangen hin Einsicht in alle sie betreffenden Daten zu gewähren. Nicht anonymisierte Daten dürfen nur von der Einrichtung elektronisch verarbeitet werden, an der sie erhoben worden sind, und sind getrennt von anderen Datenarten zu speichern.
2. Gendiagnostikgesetz?

Arbeitsplatz und Versicherungen

Der österreichische Gesetzgeber geht nicht davon aus, dass genetische Analysen am Arbeitsplatz oder bei Versicherungsabschlüssen primär zu medizinischen Zwecken vorgenommen würden. Grundsätzlich und ausnahmslos **verboten ist daher die Nutzung genetischer Tests durch Arbeitgeber und Versicherungen**. In § 67 des Gesetzes heißt es hierzu: "Arbeitgebern und Versicherer einerseits, deren Beauftragten und Mitarbeitern ist es verboten, Ergebnisse von Genanalysen von ihren Arbeitnehmern, Arbeitssuchenden oder Versicherungsnehmern oder Versicherungsverwaltungen zu erheben, zu verlangen, anzunehmen oder sonst zu verwerten."

Genetische und psychosoziale Beratung

Vor der Durchführung einer genetischen Untersuchung muss der Klient **schriftlich bestätigen**, dass er über "Wesen, Tragweite und Aussagekraft der Genanalyse aufgeklärt worden ist und der Genanalyse zugestimmt hat" (§ 65). **Vor und nach Durchführung einer Genanalyse** zur Feststellung einer Veranlagung für eine Erbkrankheit oder zur Feststellung eines Überträgerstatus **hat eine ausführliche Beratung zu erfolgen**. Die Beratung darf "**keinesfalls direktiv**" erfolgen, und die Beratenen müssen auf die Möglichkeit einer **zusätzlichen nichtmedizinischen Beratung** hingewiesen werden (§ 69).

Zulassung zur Durchführung von Gendiagnostik

Genanalysen zu medizinischen Zwecken **dürfen** dem Gesetz zufolge **nur in dafür vom zuständigen Ministerium zugelassenen Einrichtungen durchgeführt werden** (§ 68). Das Ministerium erteilt die Zulassung nach Anhörung des für die Zulassung zuständigen wissenschaftlichen Ausschusses dann, "wenn aufgrund der personellen und sachlichen Ausstattung eine dem Stand von Wissenschaft und Technik entsprechende Durchführung der Genanalysen und der Schutz der dabei anfallenden genanalytischen Daten gemäß § 71 sichergestellt ist".

Das zuständige Ministerium für Gesundheit kann "wenn dies zur Sicherung einer einwandfreien Durchführung von Genanalysen und damit im Zusammenhang stehenden Beratungen geboten ist", durch Verordnung nähere Vorschriften u.a. über die personelle und sachliche Ausstattung der genetische Analysen durchführenden Einrichtungen erlassen (§ 72). Das Gesetz sieht außerdem eine
Meldepflicht (§ 73) vor, der zufolge der Leiter einer Einrichtung der zuständigen Behörde in zweijährigem Abstand eine zusammenfassende Meldung über die in der Einrichtung durchgeführten Genanalysen zu übermitteln hat.

Gentechnikkommission - Zulassung von Tests

Schweiz - Entwurf für ein "Bundesgesetz über genetische Untersuchungen am Menschen"

Der in der Schweiz vorgelegte Vorentwurf für ein "Bundesgesetz über genetische Untersuchungen beim Menschen" vom September 1998 orientiert sich wie das österreichische Gentechnikgesetz ebenfalls am Prinzip der Zulässigkeit genetischer Tests ausschließlich zu medizinischen Zwecken (§§ 8 ff.), kommt aber in der Umsetzung im Einzelnen zu z.T. anderen und detaillierteren Bestimmungen.

Begrenzung auf medizinische Zwecke und Arztvorbehalt

Genetische Untersuchungen dürfen nur durchgeführt werden, "wenn sie einem prophylaktischen oder therapeutischen Zweck oder als Grundlage für die Lebensgestaltung oder die Familienplanung dienen" (Art. 8).

Zu einer genaueren Bestimmung der Zulässigkeit kommt der Entwurf für die Nutzung genetischer Tests im Rahmen pränataler Diagnostik. Pränatale Untersuchungen dürfen in keinem Fall darauf abzielen, "Eigenschaften des Embryos oder des Fötus, welche die Gesundheit nicht beeinträchtigen, zu ermitteln oder aus anderen als medizinischen Gründen das Geschlecht festzustellen." (Art. 9) Die Bewilligung von Reihenuntersuchungen wird erteilt, wenn eine Frühbehandlung oder Prophylaxe möglich ist, die Untersuchungsmethode zu-
verlässige Ergebnisse liefert, wenn sie "zweckmäßig und wirtschaftlich" und eine genetische Beratung gewährleistet ist (Art. 10).

Genetische Untersuchungen zu medizinischen Zwecken dürfen **nur von Ärzten veranlasst werden.** Bei präsymptomatischen Untersuchungen, Untersuchungen im Hinblick auf die Familienplanung und pränatalen Untersuchungen muss die Veranlassung durch einen Facharzt/eine Fachärztin "mit entsprechender Ausbildung" erfolgen (Art. 11).

Zulassung zur Durchführung von Gendiagnostik

Die **Berechtigung** zur Durchführung von genetischen Untersuchungen muss dem Entwurf zufolge **vom zuständigen Bundesamt erteilt werden.** Die Bewilligung soll Laboratorien und Ärzten dann erteilt werden, wenn
- "eine sorgfältige und gesetzeskonforme Tätigkeit;
- die Durchführung der Untersuchung nach dem Stand von Wissenschaft und Technik und
- die Einhaltung der Datenschutzbestimmungen"
gewährleistet sind (Art. 6).

Recht auf Nichtwissen und Datenschutz

Genetische Daten sollen nach Artikel 5 dem Berufsgeheimnis sowie den Datenschutzbestimmungen des Bundes und der Kantone unterstehen.

Die Durchführung genanalytischer Untersuchungen ist generell an die Zustimmung des bzw. der Betroffenen geknüpft (Art. 4). Auch bezüglich der Zurkenntnisnahme von Untersuchungsergebnissen und der aus der Untersuchung zu ziehenden Folgerungen gilt das **Selbstbestimmungsrecht** der betroffenen Person (Art. 15).

Eine genanalytische Probe darf nur zu den Zwecken weiterverwendet werden, denen die betroffene Person zugestimmt hat (Art. 17). Eine Verwendung zu Forschungszwecken unter Wahrung der Anonymität ist zulässig, wenn die betroffene Person ausreichend informiert wurde und die Nutzung nicht ausdrücklich untersagt hat.

Das Ergebnis einer Genanalyse darf nur der betroffenen Person mitgeteilt werden. Über die Weitergabe des Ergebnisses durch den Arzt/die Ärztin an eventuell mitbetroffene Familienangehörige entscheidet die betroffene Person. Im Falle der Verweigerung der Zustimmung zur Weitergabe des Ergebnisses
VI. Schlussfolgerungen

kann der Arzt, sofern die Information "zur Wahrung überwiegender Interessen" der Verwandten notwenig ist, die Entbindung vom Berufsgeheimnis bei der zuständigen kantonalen Behörde beantragen (Art. 16).

Genetische und psychosoziale Beratung

Genetische Analysen müssen vor, während und nach der genetischen Untersuchung von einer nicht direktiven Beratung begleitet werden, die sich ausschließlich an der individuellen Situation der betroffenen Person zu orientieren hat. Umfang und Art der Informationen, die in der Beratung zu berücksichtigen sind (Aussagekraft der Tests, Risiken, Krankheitsbilder), werden ausdrücklich im Entwurfstext festgehalten (Art. 12).

Zulassung genetischer Tests

Der Entwurf sieht vor, dass neue genetische Tests einer Zulassung bedürfen, bevor sie in der medizinischen Praxis angewandt werden. Für die Einführung bzw. das in Verkehr bringen von genetischen Tests ist nach Artikel 7 des Gesetzentwurfes die Bewilligung des zuständigen Bundesamtes erforderlich. Der Vertrieb genetischer Tests für den "allgemeinen Gebrauch" ist verboten. Wörtlich lautet Artikel 7 des Entwurfes:

– "Der Vertrieb genetischer Tests für den allgemeinen Gebrauch ist verboten.
– Wer genetische Tests für Laboratorien oder Ärztinnen und Ärzte einführen oder in Verkehr bringen will, benötigt eine Bewilligung des vom Bundesrat bestimmten zuständigen Bundesamtes.
– Die Bewilligung wird nach Anhörung der eidgenössischen Kommission für genetische Untersuchungen erteilt, wenn nachgewiesen ist, dass der Test zuverlässige und klar interpretierbare Ergebnisse liefert.
– Der Bundesrat erlässt die Ausführungsbestimmungen."
Arbeitsplatz und Versicherungen

Im Vergleich zum generellen Verbot der Nutzung genetischer Tests durch Arbeitgeber und Versicherungen in Österreich sieht – bei einer grundsätzlich ebenfalls eher restriktiven Regelung – der Schweizer Gesetzentwurf differenzierte Regelungen für den Einsatz genetischer Diagnostik in diesen Feldern vor.

Die aktive Nutzung genetischer Diagnostik durch Versicherungen wird durch Artikel 22 weitgehend ausgeschlossen:

– "Versicherungseinrichtungen dürfen von der antragstellenden Person keine präsymptomatische oder pränatale Untersuchung als Voraussetzung für die Begründung eines Versicherungsverhältnisses verlangen.
– Sie dürfen von der antragstellenden Person bei der Begründung eines Versicherungsverhältnisses weder die Offenlegung von Ergebnissen aus früheren präsymptomatischen oder pränatalen Untersuchungen oder von Untersuchungen im Hinblick auf die Familienplanung verlangen noch solche Ergebnisse verwerten.
– Der antragstellenden Person ist es untersagt, der Versicherungseinrichtung von sich aus Ergebnisse aus früheren präsymptomatischen oder pränatalen Untersuchungen mitzuteilen."

Bezüglich des Einsatzes genetischer Tests am Arbeitsplatz sieht der Gesetzentwurf vor, dass "bei der Begründung oder während der Dauer des Arbeitsverhältnisses" weder der Arbeitgeber noch ein Vertrauensarzt präsymptomatische Untersuchungen oder Daten, die aus solchen Untersuchungen stammen, verwerten dürfen (Art. 18).
VI. Schlussfolgerungen

Kommission für genetische Untersuchungen

Artikel 32 sieht die Einsetzung einer Kommission für genetische Untersuchungen beim Menschen vor, in der "die maßgeblichen wissenschaftlichen Fachrichtungen und die Praxis angemessen vertreten sein" sollen. Die Kommission hat nach Artikel 38 die folgenden Aufgaben:

"a. Maßstäbe für die Qualitätskontrolle von Laboratorien im Hinblick auf die Bewilligungserteilung und die Aufsicht (Art. 6) zu erarbeiten;
b. auf Anfrage der Bewilligungsbehörde zu konkreten Bewilligungsgesuchen Stellung zu nehmen;
c. im Auftrag der Bewilligungsbehörde bei Inspektionen von Laboratorien mitzuwirken;
d. Empfehlungen zur Durchführung von Reihenuntersuchungen (Art. 10) abzugeben;
e. die zuständige Behörde bei Gesuchen um Entbindung vom Berufsgeheimnis nach Artikel 15 Absatz 3 auf Anfrage zu beraten;
f. die Zuverlässigkeitsprüfung für genetische Tests und Untersuchungen nach den Artikeln 7, 19 und 23 vorzunehmen;"
g. die wissenschaftliche und praktische Entwicklung der genetischen Untersuchungen zu verfolgen, Empfehlungen dazu abzugeben und Lücken in der Gesetzgebung aufzuzeigen;

h. zusammen mit der nationalen Ethikkommission zur Klärung ethischer Fragen in Bezug auf genetische Untersuchungen beizutragen;

i. die eidgenössischen Räte, den Bundesrat und die Kantone auf Anfrage zu beraten."

Strafbestimmungen

Sowohl die Durchführung genetischer Untersuchungen "ohne Bewilligung" (d.h. ohne Zulassung der Einrichtung) als auch der Vertrieb genetischer Tests und die missbräuchliche Durchführung von genetischen Untersuchungen im Arbeits- und im Versicherungsbereich sowie die Verletzung des Berufsgeheimnisses können mit Gefängnis oder Buße bestraft werden (Art. 35 ff.).

Orientierungspunkte für eine gesetzliche Regelung der Gendiagnostik

Der Schweizer Entwurf für ein Gendiagnostikgesetz und die Regelungen zur Gendiagnostik im österreichischen Gentechnikgesetz weisen in Einzelfragen eine unterschiedliche Regelungstiefe, was die als relevant angesehenen Reglungsfragen und die Inhalte der Regelungen angeht, aber auch intensive Über- schneidungen auf. Diese sollen als mögliche Orientierungspunkte der Entscheidungsfindung hinsichtlich der Ziele und Inhalte eines deutschen Gendiagnostikgesetzes abschließend noch einmal kurz benannt werden:

- **Leitendes Prinzip der Regelung** ist die Eingrenzung der Nutzung von Gendiagnostik auf **medizinische Zwecke** und die Bindung der Veranlassung genetischer Untersuchungen an den **Arztvorrbehalt** bzw. eine fachärztliche Qualifikation.

- **Der Einsatz von Gendiagnostik oder die Nutzung von genetischen Daten durch Arbeitgeber und Versicherungen wird restriktiv** geregelt (grund-sätzliches Verbot bzw. Verbot mit wohldefinierten Ausnahmen).

- **Das Selbstbestimmungsrecht** der untersuchten Person prägt sowohl die Regelungen zur Durchführung von Tests, die nur mit schriftlicher Zustimmung der zu untersuchenden Person erfolgen kann, als auch die Regelungen zum Umgang mit den genetischen Daten, die im Prinzip nicht - und wenn,
nur mit ausdrücklicher Zustimmung des Klienten/der Klientin - an Dritte (auch an Verwandte) weitergegeben werden dürfen.

- Die **Qualität der genetischen Beratung** ist Gegenstand von Regelungen, die im Einzelnen die Art der im Beratungsgespräch zu vermittelnden Informationen, die Ausrichtung der Beratung am Prinzip der Nicht-Direktivität und die strikte Bindung der Durchführung genetischer Untersuchungen an eine ausführliche (auch psychosoziale) Beratung vor und nach der Diagnose vorschreiben.

- Zur Sicherung der Qualität von Diagnose und Beratung wird die Durchführung genetischer Untersuchungen von einer staatlichen **Zulassung der gendiagnostischen Labore, Praxen oder Institute** abhängig gemacht.

- Insbesondere in Bezug auf die **Pränataldiagnostik** wird neben der Qualität der humangenetischen Beratung auch eine **unabhängige (nicht medizinische oder humangenetische) Beratung** (zumindest als Option) sowie die Gewährleistung eines entsprechenden institutionalisierten Beratungsangebotes vorgeschrieben.

- Die Einführung genetischer Tests wird nicht dem Markt überlassen. Vielmehr ist eine behördliche **Zulassung genetischer Tests** erforderlich.

Literatur

1. Im Rahmen des Projektes vergebene Gutachten

2. Weitere Literatur

BUNDESREGIERUNG (1996): Antwort der Bundesregierung auf eine kleine Anfrage der Abgeordneten Hubert Huppe u.a. - Drucksache 13/5248 - Tötung ungeborener Kinder, staatliches Schutzkonzept, Beobachtungs- und Nachbesserungspflicht. Deutscher Bundestag, Drucksache 13/5364, Bonn

BUND-LÄNDER-ARBEITSGRUPPE GENOMANAALYSE (1990): Abschlußbericht. In: Bundesanzeiger 42, Beilage zu Nr. 161a

2. Weitere Literatur

2. Weitere Literatur

NEUER-MIEBACH, TH., TARNEDEN, R. (Hg.) (1994): Vom Recht auf Anderssein - Anfragen an pränatale Diagnostik und humangenetische Beratung. Düsseldorf

NEUGEBORENEN-SCREENING IN NRW (o.J.): Konzept zur Neuordnung des Neugeborenen-Screening auf angeborene Stoffwechselstörungen und Endokrinopathien in Nordrhein-Westfalen (unveröffentlichtes Manuskript)

REILLY, PH., PAGE, D.C. (1998): We're Off to See the Genome. In: Nature Genetics 20, S. 15-17
2. Weitere Literatur

Anhang

1. Tabellenverzeichnis

Tab. 1: Humangenetische Leistungen in Westdeutschland
(ab 1995 inkl. Ost-Berlin) ... 49
Tab. 2: Angebot Molekulare Diagnostik der Praxisgemeinschaft Leidenberger,
Weise, Breustedt, Schulte & Partner GbR, Hamburg 60

2. Abbildungsverzeichnis

Abb. 1: Zahl der Einträge in Mendelian Inheritance in Man
(McKusick Katalog) ... 45
Abb. 2: Zugehörigkeit genetischer Beratungsstellen in Deutschland 50

Aminosäuren - Bausteine der Proteine, deren Art und Abfolge durch die DNA-Sequenz der Gene bestimmt wird. Insgesamt gibt es mehr als 20 natürlich vorkommende Aminosäuren, die die Eiweißstoffe aufbauen.

Amniozentese - Fruchtwasserentnahme durch Punktion der Fruchthöhle bei Schwangeren.

Anamnese - Krankheitsvorgeschichte, meist durch Befragung des Patienten festgestellt.

Base - hier: chem. Bauelement der DNA; die Abfolge der Basen, die Sequenz, ist der Code, mit dessen Hilfe Proteine gebildet werden.

Chorea Huntington - "Veitstanz"; eine sich zwischen dem 25. und 55. Lebensjahr manifestierende, erbliche Krankheit, die über fortschreitende, nicht therapierbare Gehirnschädigung tödlich verläuft.

Chorionzotten-Biopsie - Entnahme von Chorionzottengewebe bei Schwangeren. Dieses Gewebe wird vom befruchteten Ei nach der Einnistung in die Gebärmutter gebildet, gehört aber nicht zum Embryo selbst. Es besitzt aber die gleichen Gene wie der Embryo und kann daher als Material für eine pränatale Diagnose dienen.

chromosomaler - die Chromosomen betreffend.

Cystische (oder: zystische) Fibrose (CF) - auch Mukoviszidose genannt; erhebliche Stoffwechselstörung, die meist schon im Kindesalter zu schweren Komplikationen der Atem- und Verdauungswege führt. Bei Früherkennung im Neugeborenenalter und konsequenter Therapie können die meisten Patienten das Erwachsenenalter erreichen.

deletion - Verlust einer Base in der DNA oder ganzer DNA-Abschnitte.
direkte DNA-Analyse - direkter Nachweis einer Mutation in der Sequenz der DNA.

Disposition - Veranlagung oder Empfänglichkeit eines Menschen für bestimmte Erkrankungen oder Veränderungen des Stoffwechsels.

DNA - (für engl. desoxyribonucleic acid; deutsch: Desoxyribonukleinsäure, DNS) Trägermolekül der Erbinformation.

DNA-Analysen - molekularbiologische Methoden zur Feststellung von Veränderungen einzelner Gene.

DNA-Chip-Technologie - siehe Kap. II.1.2.

DNA-Sonde - radioaktiv oder mit Farbsubstanzen markiertes DNA-Stück, das den Nachweis oder die Sequenzüberprüfung bestimmter kleiner DNA-Abschnitte ermöglicht.

dominant(es Merkmal) - vererbtes Merkmal, das sich auch ausbildet, wenn es nur von einem Elternteil vererbt wurde (nur einmal im Genom vorhanden ist). Im Gegensatz dazu bildet sich ein "rezessives" Merkmal nur dann aus, wenn das Merkmal von beiden Eltern (zweimal im Genom vorhanden) vererbt wurde (vgl. "Allel").

Down-Syndrom - (Trisomie 21) das Chromosom 21 liegt in drei statt in zwei Kopien vor. Dadurch entsteht der typische Symptomkomplex dieser Krankheit (z.B. schräge Augenlidachsen, eingeschränkte Intelligenz usw.).

Embryo - Entwicklungsstadium befruchteter Eizellen. Bezeichnung für die Frucht in der Gebärmutter während der Organentwicklung, das heißt beim Menschen während der ersten drei Monate der Schwangerschaft.

Expression - Gene enthalten die notwendige Information, die eine Zelle braucht, um ein Protein zu bilden, sie wird aber nicht immer und nicht in jeder Zelle abgerufen. Wenn ein Gen aktiv ist, d.h. wenn die Information genutzt wird, um ein Protein zu bilden, spricht man von Genexpression.

Familienanamnesen - Stammbaumuntersuchungen durch Fragen nach Krankheiten oder sonstigen auffälligen Eigenschaften in der Familie und nahen Verwandtschaft.

forensisch - gerichtlich.

Fötus - ungeborenes Kind vom dritten Monat an.

Gen - funktionelle Grundeinheit des Erbgutes; Abschnitt auf der DNA, welcher die Information für die Bildung eines Proteins oder zur Steuerung anderer Gene birgt. Gene vermitteln die Struktur eines Organismus wie auch sämtliche Stoffwechselvorgänge. Alle Zellen eines Individuums besitzen denselben Bestand an Genen. Es sind allerdings in den verschiedenen Zelltypen immer nur spezielle Gene aktiv.

Genetik - Vererbungslehre (lat. von: genesis = Werden), befasst sich mit allen Vorgängen, die für die Gleichheit der Merkmale bei Eltern und Nachkommen verantwortlich sind, und mit den Prozessen, die verändernd darauf einwirken.
genetische Analysen - Sammelbezeichnung für "genomanalytische" Untersuchungen auf verschiedenen Ebenen (Erscheinungsbild/Phänotyp, biochemische Untersuchungen, Chromosomenuntersuchungen, DNA-Untersuchungen).

genetische Vielfalt - die vererbbare genetische Variation innerhalb von und zwischen Populationen.

genetischer Fingerabdruck - (auch: DNA-fingerprinting) molekularbiologische Methode zur Identifizierung einer Person (z.B. Vaterschaftsnachweis).

Genexpression - s.u. Expression.

Genom - das gesamte genetische Material einer Zelle bzw. eines Organismus; das Genom des Menschen enthält etwa 100.000 Gene.

Genotyp/genotypisch - die gesamte genetische Konstitution eines Organismus/die genetische Konstitution betreffend.

Gentransfer - Übertragung eines fremden Gens in einen Empfängerorganismus.

heterozygot - s.u. "Allel".

homolog - entsprechend; in Bau und Funktion übereinstimmend (hier z.B. homologe Chromosomen oder homologe Gene).

homozygot - s.u. "Allel".

in vitro - lat.: "im Glas", im Reagenzglas, außerhalb des lebenden Organismus bzw. außerhalb des Körpers. Bezeichnung für wissenschaftliche Experimente, die nicht an natürlich lebenden Organismen, sondern mit künstlichen Systemen durchgeführt werden.

in vivo - lat.: im lebenden Organismus, innerhalb des Körpers.

indirekte DNA-Analyse - Nachweis eines Markers in der DNA-Sequenz, der meist zusammen mit der entsprechenden Krankheit vererbt wird.

In-vitro-Fertilisation - künstliche Befruchtung einer Eizelle außerhalb des Organismus.

Keimzelle - Geschlechtszelle eines Organismus, z.B. Eizelle, Spermazelle, Pollen.

Marker - hier: in der Sequenz der DNA feststellbare Stelle, die meist zusammen mit Krankheitsanlagen (Genveränderungen) vererbt wird. Mit der Vererbung des feststellbaren Markers wird daher auch die Vererbung eines speziellen genetischen Defektes angenommen und kann damit indirekt zu dessen Nachweis dienen.

monogen - nur von einem einzigen Gen beeinflusst.

Mukoviszidose - s.u. "Cystische Fibrose".

multifaktoriell - von mehreren Genen und/oder von verschiedenen Umweltfaktoren verursacht.

mutagen - DNA-verändernd.

Mutation - Veränderung des Erbgutes durch Veränderung der DNA; Mutationen können spontan auftreten, werden aber verstärkt ausgelöst durch verschiedene Faktoren, wie z.B. bestimmte Chemikalien und energiereiche Strahlung.
Glossar

PCR - s. u. "Polymerasekettenreaktion".

Phänotyp - die während des gesamten Lebens eines Organismus manifestierten morphologischen, physiologischen, biochemischen, Verhaltens- und sonstigen Eigenschaften, die sich durch die Wirkung von Genen und Umwelt entwickeln (äußerer Erscheinungsbild eines Organismus), oder irgendeine Untergruppe derartiger Eigenschaften, z.B. jene, die durch ein einzelnes Gen bestimmt werden.

Pharmkogenomik - siehe Kap. II.2.2.

polygen - von mehreren Genen beeinflusst.

Polymerase-Kettenreaktion - (PCR = polymerase chain reaction) molekulargenetische Methode zur selektiven Vermehrung eines spezifischen DNA-Abschnittes.

Präimplantations-Diagnostik - Untersuchungen an einem - künstlich befruchteten - Embryo vor Einpflanzung in den Uterus (Kap. III.3).

rekombinant - Organismus, der (gentechnisch) verändert wurde, indem eigene oder aus anderen Organismen stammende Gene übertragen wurden (synonym: transgene Organismen). Der Vorgang der Veränderung wird als Rekombination bezeichnet.

Restriktionsenzym - enzymatische "Schere", ein Protein, das die DNA an definierten Stellen erkennen und dort "zerschneiden" kann.

Restriktions-Fragment-Längen-Polymorphismus - (abgekürzt: RFLP) individuelles "Schnittmuster" der DNA eines Organismus. Dieses Muster wird durch das Zerschneiden der DNA mit einem Restriktionsenzym erzeugt. Da dieses Muster bei jedem Individuum anders aussieht, kann es zur eindeutigen Identifizierung herangezogen werden.

rezessiv - s. u. "dominant".

Screening - systematische Untersuchung bestimmter Bevölkerungsgruppen auf bestimmte Merkmale ("Reihenuntersuchungen").

somatisch - hier: nur Körperzellen (nicht Keimzellen) betreffend.

Test-Kit - einfach handhabbarer "Bausatz" für einen (hier: genetischen) Test.

Totipotenz - Entwicklungspotenzial einer Zelle, unter geeigneten Bedingungen in alle Zell- und Gewebetypen differenzieren zu können.

transgen - aus einem anderen Genom stammend, Genom, das mit Hilfe der Gentechnik übertragene fremde DNA enthält.

Triple-Test - Untersuchung des mütterlichen Blutes auf Proteine, die vom Fötus stammen. Die Mengen dieser Proteine werden als Anzeichen für eventuell vorliegende Trisomie 21 oder Neuralrohrdefekte beim Fötus gewertet.

Trisomie 21 - s. u. "Down-Syndrom".

Zygote - befruchtete Eizelle.