Monitoring
"Nachwachsende Rohstoffe"

Vergasung und Pyrolyse von Biomasse

Zweiter Sachstandsbericht
Inhalt

Zusammenfassung ... 3

Vorwort ... 7

I. Einleitung .. 9

II. Vergasung und Pyrolyse von Biomasse 11

1. Vergasungstechniken ... 12
 1.1 Festbettvergaser ... 13
 1.2 Wirbelschichtvergaser .. 20
 1.3 Flugstromvergaser ... 22
 1.4 Pyrolyse von Biomasse ... 23
 1.5 Eignung der Verfahren für verschiedene Biobrennstoffe 26

2. Gasreinigung ... 28
 2.1 Partikel und Alkalien .. 29
 2.2 Teerverbindungen ... 33
 2.3 Schwefel- und Halogenverbindungen 35
 2.4 Stickstoffverbindungen ... 36

3. Gasnutzung ... 37
 3.1 Dampfmotoren und -turbinen .. 38
 3.2 Stirlingmotoren ... 38
 3.3 Gasmotoren ... 41
 3.4 Gasturbinen ... 42
 3.5 Wasserstoff- und Methanolproduktion 46
 3.6 Brennstoffzellen ... 50

4. Gesamtsysteme ... 60
 4.1 BHKW mit Gasmotoren ... 62
 4.2 GuD-Anlagen mit integrierter Biomassevergasung 62
 4.3 CO-Vergasung von Biomasse und Kohle 64
 4.4 Biomassevergasung und Brennstoffzellen 65
III. Stand der Biomassevergasung .. 69
 1. Stand der Technik bei Kleinvergasern 69
 2. Stand der Technik bei Wirbelschichtvergasern 74
 3. Stand der Gasnutzung in Brennstoffzellen 78
 4. Wirtschaftlichkeitsaspekte 80
 5. Umweltaspekte .. 87

IV. Situation der Stromgewinnung aus Biomasse 91
 1. Situation im Inland ... 91
 2. Beispiele für die Situation im Ausland 92
 3. Konsequenzen .. 97

V. Resümee und Ausblick .. 99
 1. Stand und Entwicklungs perspektiven der Technik 99
 2. Schlußfolgerungen ... 103

Literatur .. 107

Anhang .. 115
 1. Tabellenverzeichnis .. 115
 2. Abbildungsverzeichnis .. 116

Glossar .. 117
Zusammenfassung

Die Vergasung von Biomasse stellt im Rahmen der zahlreichen Möglichkeiten zur energetischen Nutzung von Biomasse eine Energietechnik dar, die im Vergleich zu den konventionellen Verbrennungstechniken die folgenden, wesentlichen Vorteile aufweist:

Bei den meisten Verfahren zur Biomassevergasung wird Luft als Vergasungsmittel eingesetzt und ein niederkaloriges Schwachgas (3-5 MJ/m³) erzeugt. Diese Schwachgase können nach einer Gasreinigung und ggf. Gasabkühlung motorisch genutzt oder in Gasturbinen eingesetzt werden. Für Gasturbinen mit nachgeschalteter Dampfturbine (GuD-Anlagen) sind mittelkalorische Gase (12-15 MJ/m³) günstiger als Schwachgase. Im Falle der Dampfeinspritz-
Zusammenfassung

Für Anlagen mit einer Leistung von 3-20 MW, erscheint die Stromerzeugung über Gasturbinen und Cheng-Kreislauf oder in GuD-Anlagen mit vorange-
schanteter Biomasse-Wirbelschichtvergasung unter atmosphärischem Druck aus technisch-ökonomischer Sicht die derzeit aussichtsreichste Technik. Für BIKW bis etwa 2 MWel ist die Gasnutzung in Gasmotoren gegenwärtig interessanter als die Gasturbine. Wegen der Probleme bei der Brennstoffbeschaffung und Logistik kommen Anlagen über etwa 30 MWel für die Biomassevergasung in Deutschland kaum in Frage.

In Deutschland und in einigen anderen Ländern wird gegenwärtig die Mitverbrennung von Biomasse in vorhandenen großen Kohlekraftwerken (> 100 MWel) untersucht. Die Integration von Vergasungsanlagen für Biomasse in Kohlekraftwerke hätte gegenüber ausschließlich mit Biomasse betriebenen Vergasungsanlagen den Vorteil, daß die Flexibilität gegenüber saisonalen Schwankungen bei der Verfügbarkeit der Biobrennstoffe größer ist, und daß der erforderliche Investitionsaufwand für die Biomassevergasung geringer ist.

Im Falle einer Gasnutzung in Brennstoffzellen erscheinen die Polymermembran-Brennstoffzellen (Proton Exchange Membrane Fuel Cell, PEMFC) und die Hochtemperatur-Brennstoffzellen (Karbonatschmelze-Brennstoffzelle und Oxidkeramische Brennstoffzelle; Molten Carbonate Fuel Cell, MCFC, und Solid Oxide Fuel Cell, SOFC) wegen ihrer höheren elektrischen Gesamtwirkungsgrade auf längere Sicht attraktiver als die Phosphorsaure Brennstoffzelle (Phosphoric Acid Fuel Cell, PAFC). Bei einer Stromerzeugung in Hochtemperatur-Brennstoffzellen mit integrierter Biomassevergasung zur Brennstoffbereitstellung ergeben sich außerdem die Vorteile, daß auf eine apparativ getrennte CO-Shiftreaktion vor dem Gaseintritt in die Brennstoffzelle verzichtet und die Abwärme auf einem hohen Temperatur niveau ausgekoppelt werden kann. Für die PEMFC und die MCFC, die an der Schwelle zur Demonstrationsphase stehen, wird innerhalb der nächsten Jahre von einigen Firmen der Schritt in eine Kleinserienproduktion angestrebt.

Obwohl bei jeder der genannten Brennstoffzellentypen in den vergangenen Jahren erhebliche Fortschritte bei der Technologieentwicklung gemacht wurden, bleiben bei allen drei Typen noch mehrere wichtige technische Probleme zu überwinden. Es wird sich noch erweisen müssen, welcher Typ am besten und am schnellsten mit diesen Problemen fertig wird. Der Beginn einer Serienproduktion dürfte in allen Fällen die gegenwärtig gegenüber anderen Gasverwendungsarten bestehenden Kostennachteile deutlich verringern. Um die technische Reife von Brennstoffzellensystemen mit integrierter Biomassevergasung zu erreichen, sind jedoch noch umfangreiche FuE-Arbeiten erforderlich, die sich nicht auf die Brennstoffzellentechnologien beschränken.
Zusammenfassung

Unter den gegenwärtigen energiewirtschaftlichen Rahmenbedingungen besteht für Anlagenhersteller und potentielle Betreiberfirmen wenig Motivation, die Forschung und Entwicklung größtenteils mit eigenen Mitteln voranzutreiben. In dieser Situation ist nicht nur die Förderung von anwendungsbezogenen Demonstrationsprojekten, sondern auch von Forschung und Entwicklung im Bereich der Vergasung, Gasreinigung und Gasverwendung Voraussetzung für eine Belebung der Forschungs- und Entwicklungsaktivitäten. Es wird angeregt, weitere Forschungs-, Entwicklungs- und Demonstrationsvorhaben prioritär in den folgenden Bereichen zu fördern:

- Demonstration eines störungsarmen Anlagenbetriebs mit einem integrierten Verfahren zur Biomassevergasung (zunächst Holz), einem Gasreinigungssystem und einer Gasnutzung in Gasturbinen und Gasturbinen im Dauerbetrieb in technischen Versuchsanlagen und danach in Demonstrationsanlagen
- Entwicklung und technische Demonstration von Vergasern für Stroh und andere halmartige Biomassen und zugehörige Gasreinigungsverfahren
- Integration von Anlagen zur Vergasung oder Pyrolyse von Biomasse in bestehende größere Kohlekraftwerke
- Experimentelle Prüfung der Verknüpfung von Verfahren zur Vergasung von Biomasse, zur Gasreinigung und zur Gasnutzung in Brennstoffzellen

Vorwort

Im Rahmen des Arbeitsprogramms des TAB kommt dem Arbeitsbereich Monitoring besondere Bedeutung zu. Seine Zielsetzung besteht in

- der Beobachtung wichtiger wissenschaftlich-technischer Trends und damit zusammenhängender gesellschaftlicher Entwicklungen und
- der Verfolgung und Auswertung wichtiger TA-Projekte innerhalb und außerhalb der Bundesrepublik Deutschland.

I. Einleitung

Die aus dieser Zeit vorhandenen Erkenntnisse über das Konstruktionsprinzip von Holzvergasern bildeten die Grundlagen der FuE-Aktivitäten zur Biomassee vergasung, die in den 70er und 80er Jahren auf der Suche nach Alternativen zum Erdöl begonnen wurden. Die Arbeiten konzentrierten sich auf die Reaktivierung des verlorengegangenen Wissensstandes von 1945. Große technische
Fortschritte konnten nicht erreicht werden. Unter den Vergasungstechnologien, die im Laufe der Jahre entwickelt wurden, waren nicht wenige Fehlschläge, die dazu geführt haben, daß die Vergasungstechnologie an Glaubwürdigkeit als eine einsatzfähige Technik zur energetischen Nutzung von Biomasse verloren hat. Neben den technischen Schwierigkeiten haben auch die anhaltend niedrigen Preise für fossile Energieträger dazu beigetragen, daß zahlreiche der begonnenen Forschungs- und Entwicklungsarbeiten im Laufe der Jahre wieder eingestellt wurden.

Erst in jüngster Zeit wurde das Interesse an der Entwicklung und Erprobung von Techniken zur Biomassevergasung und zur Gasverstromung neu belebt. Ein Grund hierfür ist das allgemein gewachsene Interesse für die energetische Nutzung von Biomasse angesichts der damit verbundenen CO₂-Vorteile. In Deutschland hat auch das Stromeinspeisungsgesetz und die darin festgelegte höhere Einspeisevergütung für Strom aus regenerativen Energieträgern ins öffentliche Netz dazu beigetragen.

Der vorliegende Sachstandsbericht zur energetischen Nutzung von Holz und halbhartiger Biomasse durch Vergasung und Pyrolyse versucht Antworten auf die folgenden Fragen zu geben:

- Welche Vor- und Nachteile besitzen die verfügbaren Technologien zur Biomassevergasung im Vergleich zu konventionellen Energieumwandlungstechniken wie der Holz- oder Strohverbrennung?
- Welche technischen Probleme bei der Vergasung von Biomasse und der Nutzung des erzeugten Gases konnten in den vergangenen Jahren gelöst werden und welche noch nicht?
- Welche anwendungsortorientierten Erfahrungen mit Biomasse-Vergasungsanlagen und mit Techniken zur Nutzung des bei der Vergasung erzeugten Gases liegen im In- und Ausland vor?
- Welche Fortschritte auf dem Gebiet der Vergasung und der Gasnutzung erscheinen in den nächsten fünf bis zehn Jahren sowie langfristig erreichbar?
- In welchen Bereichen sollte zukünftig verstärkt gefördert werden, um die Biomassevergasung voranzubringen?
II. Vergasung und Pyrolyse von Biomasse

Als Vergasung bezeichnet man die thermochemische Zersetzung eines Kohlenstoffhaltigen Brennstoffes durch die Zugabe einer unterstöchiometrischen Menge an Oxidationsmitteln und deren Überführung in ein brennbares Gas. Für die Umsetzung sind hohe Temperaturen erforderlich, die entweder durch teilweise Oxidation des Brennstoffes (autothermer Prozeß) oder durch Wärmeeintrag von außen (allothermer Prozeß) erreicht werden können.

Aufgrund physikalischer Einschränkungen und der Unvollständigkeit bei der Erreichung chemischer Gleichgewichte können auch bei höheren Vergasungstemperaturen und längeren Gasverweilzeiten im Reaktor nicht alle Pyrolyseprodukte in CO, CO₂, CH₄ und H₂ konvertiert werden. Als Folge der unvollständigen Vergasungsreaktionen enthält das Rohgas verschiedene Teerverbindungen (höhersiedende Kohlenwasserstoffe).

Der thermische Wirkungsgrad der Vergaser, der die Effizienz der Brennstoffumwandlung in gasförmige Produkte beschreibt, wird definiert als das Verhältnis des Energiegehalts im abgekühlten Schwachgas zum Energiegehalt des Brennstoffs. Der Vergasungswirkungsgrad liegt zwischen 70 % und 90 %. Er ist um so schlechter, je unvollständiger die Vergasung ist und je größer die Wärmeverluste durch das Aufheizen der Vergasungsendprodukte, durch die Wärmeleitung und Wärmeabgabe an die Umgebung und durch die Abkühlung des Gases im Falle einer Kaltgasreinigung sind. Von der eingesetzten Brennstoffenergie gehen rd. 5 % als flüssige oder feste Vergasungsprodukte und ca. 2 % als Strahlungsverluste des Reaktors an die Umgebung verloren. Über Wärmetauscher kann ein Teil der in Rohgas enthaltenen fühlbaren Wärme in nutzbare Wärme überführt und zur Erhöhung der Gesamtwärmeleistung herangezogen werden.

1. Vergasungstechniken

Einen idealen Vergaser für die Stromerzeugung aus den verschiedensten Arten von Biomasse gibt es nicht. Die bekannten Vergasertypen haben sowohl Vorteile als auch Nachteile im Hinblick auf die besondere Art der zu vergasenden Biomasse, die gewünschte Gasqualität sowie die Investitions- und Betriebskosten. Die einzelnen Vergasungssysteme unterscheiden sich durch

- den Reaktortyp, der u.a. definiert wird durch die Art des Kontakts zwischen dem Oxidationsmittel und der Biomasse (Festbett-, Wirbelschicht-, Flugstrom- oder Drehrohrreaktor),
- die Art der Wärmebereitstellung (allotherme oder autotherme Vergasung),
- die Richtung der Massenströme der Biomasse und des Vergasungsmediums zueinander (Gegenstrom- oder Gleichstromvergasung) und durch
- das eingesetzte Vergasungsmedium (Luft, Sauerstoff, Wasserdampf).
1.1 Festbettvergaser

Im Festbettvergaser, dessen Glutbett aus relativ großen Stücken (2-20 cm) besteht, wird der zu vergasende Brennstoff in einer Schüttschicht, die sich vom Eintragsort über verschiedene Zonen der Schüttung bis zum Ascheaustrag hinweg bewegt, dem Vergasungsmittel ausgesetzt. Das Vergasungsmittel wird an einem vom Vergasertyp abhängigen räumlichen Bereich mit dem Brennstoff zur Reaktion gebracht und mit dem entstehenden Gas durch und über das Festbett geleitet. Die einstufigen Festbettvergaser, bei denen die einzelnen Vergasungsreaktionen (Pyrolyse, Oxidation und Reduktion) überwiegend im gleichen Reaktor stattfinden, werden in Gegenstrom- und Gleichstromvergaser unterschieden.

II. Vergasung und Pyrolyse von Biomasse

Abb. 1: Prinzip eines Gegenstromvergasers

Beim Gleichstromvergaser bewegen sich der Brennstoffstrom und das Vergasungsmittel in gleicher Richtung (Abb. 2). Der zunächst unter weitgehendem Luftabschluß in den oberen Zonen getrocknete und pyrolysierte, stückige Biobrennstoff gelangt in die sehr heiße Oxidationszone, aus der Koks und Asche nach unten in die Reduktionszone eintreten. Die hauptsächlich in der Pyrolysezzone entstehenden Gase werden in der Oxidationszone ebenfalls stark erhitzt auf deutlich über 1.000°C. Dabei erfolgt eine weitgehende Umwandlung tærreicher in teerarme gasförmige Gasbestandteile, die in der anschließenden Reduktionszone mit dem Koks unter weiterer Gasbildung reagieren. Das Rohgas entströmt im unteren Reaktorbereich, weshalb diese Art der Vergasung auch als absteigende Vergasung (downdraft gasification) bezeichnet wird. Aufgrund der gleichen Strömungsrichtung ist die Wärmeübertragung zwischen Biomasse und Vergasungsmittel schlechter als bei der Gegenstromvergasung, weshalb das Rohgas vergleichsweise höhere Temperaturen aufweist.

Abb. 2: Prinzip eines Gleichstromvergasers

Der wichtigste Vorteil der Gleichstromvergaser ist, daß ihre Rohgase wesentlich weniger Teerprodukte und andere hochsiedende Verbindungen enthalten als die Gase aus Gegenstromvergasern (Tab. 1). Sie haben damit Vorteile für die
Erzeugung eines Rohgases, das ohne allzu kostenintensive oder umweltbelastende Reinigungsschritte für solche Gasnutzungen herangezogen werden kann, die nicht über eine direkte Verbrennung des teerhaltigen Rohgases erfolgen.

Einen absteigenden Gleichstromvergaser, bei dem zwei Drittel der Luft durch eine obere Öffnung (Open-top) des Vergasers strömen, hat das Indian Institute of Science in Bangalore entwickelt. Das Rohgas des Open-top-Vergasers soll einen relativ geringen Gehalt an Partikeln (50-90 mg/m₃) und Teerverbindungen (10-20 mg/m₃) aufweisen. Der Vergaserwirkungsgrad liegt bei ca. 80 % (Steinbrecher 1996). Die Firma DASAG (CH) testet gegenwärtig den Open-top-Vergaser unter europäischen Bedingungen.

Tab. 1: Vergleich wichtiger Kenngrößen von Gegenstrom- und Gleichstromvergasern

<table>
<thead>
<tr>
<th></th>
<th>Gegenstromvergaser</th>
<th>Gleichstromvergaser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennstoffstückigkeit</td>
<td>0,5-20 cm</td>
<td>2-20 cm</td>
</tr>
<tr>
<td>Anteil Feinmaterialien</td>
<td>< 30 %</td>
<td>< 15 %</td>
</tr>
<tr>
<td>Feuchtigkeit</td>
<td>< 40 %</td>
<td>5-25 %</td>
</tr>
<tr>
<td>Aschegehalt</td>
<td>< 5-10 %</td>
<td>< 5-10 %</td>
</tr>
<tr>
<td>Vergaserleistung</td>
<td>100 kW-10 MW</td>
<td>bei > 5 MW schwierig</td>
</tr>
<tr>
<td>Partikelgehalt im Gas</td>
<td>gering</td>
<td>gering</td>
</tr>
<tr>
<td>Teergehalt im Gas</td>
<td>bis > 100 g/m³</td>
<td>gering bis sehr gering</td>
</tr>
<tr>
<td>Betriebsverhalten</td>
<td>stabil auch bei Teillast und anderen Brennstoffen</td>
<td>bei Teillast höherer Teergehalt</td>
</tr>
</tbody>
</table>

Quelle: Croesen 1992

Festbett-Gleichstromvergaser sind in vielen Varianten entwickelt worden. Ein Beispiel für eine jüngere Entwicklung ist der von der Firma HTV Energietechnik AG in Gunzgen (CH) angebotene und weiterentwickelte Juch-Vergaser. Dieser besteht in der Grundkonstruktion aus einem schachtförmigen Gleichstromvergaser mit Festbett. Seine Besonderheit ist ein in den Vergaserschacht eingebauter, höhenverstellbarer und drehbarer Gegenkegel, mit dem sowohl das Glutbett stabil gehalten als auch Brückenbildungen durch Rührbewegungen weitgehend vermieden werden können (Abb. 3). Durch die spezielle Zuführung der Vergasungsrauch über ein Luftrohr aus hochtemperaturbeständiger Keramik entstehen in der Oxidationszone Temperaturen bis zu 2.000°C. Bei diesem hohen
1. Vergasungstechniken

Temperaturniveau werden langkettige Kohlenwasserstoffverbindungen in niedermolekulare Gase aufgespalten und die mineralischen Bestandteile des Brennstoff's teilweise zu einer inert, glasartigen Schlacke eingeschmolzen. Die Wärme des ca. 800°C heißen Rohgases, die nach der Kühlung in der Reduktionszone zur Verfügung steht, wird zur Vorerwärmung der Vergasungsluft benutzt. Das Holzgas hat einen Heizwert von 4,6-5,7 MJ/m³. Der Vergasungswirkungsgrad der Anlage liegt je nach Brennstoff bei 70-80 %.

Abb. 3: Prinzip des Juch-Vergasers

Neben den Typen von Festbettvergasern, die entweder eindeutig als Gegenstromvergaser oder als Gleichstromvergaser gekennzeichnet werden können, wurden in den vergangenen 10 Jahren vorwiegend von kleineren Unternehmen zahlreiche Varianten entwickelt, von denen im Rahmen dieses Berichtes nur ei-
nige beispielhaft angesprochen werden können. Diese Varianten lassen sich
grob untergliedern

- in einstufige Verfahren, bei denen Kombinationen von Gleichstrom- und
 Gegenstromvergasungsverfahren in einem Reaktorbehälter stattfinden (a),
- und in mehrstufige Verfahren, bei denen zwei oder drei räumlich getrennte
 Reaktorbehälter eingesetzt werden, um die verschiedenen Stufen der Pyro-
 lyse und Vergasung von Biomasse ihren jeweiligen, besonderen Anforde-
rungen entsprechend gut regulieren zu können (b).

Ein Beispiel für ein einstufiges Vergasungsverfahren gemäß (a) ist der Zweizo-
nenvergaser der Heinz-Dieter Jäckel Handels- und Vertriebsgesellschaft mbH
(früher Bio-Heizstoffwerk Berlin GmbH). Es handelt sich hierbei um einen
Doppelstromvergaser mit aufl- und absteigender Zweizonenvergasung (Abb. 4).
Der Reaktor soll ein relativ reines Rohgas mit geringen Teer- und Partikelge-
halten erzeugen.

Ein anderes Beispiel für einen einstufigen Vergaser gemäß (a) ist der auf
dem absteigenden Gleichstromverfahren basierende Wamsler-Thermoprozessor
der Firma Wamsler Umwelttechnik GmbH, die inzwischen von der Firma Um-
weltengineering Hugo Petersen in Wiesbaden übernommen wurde. Bei dem
Verfahren werden die Holzhackschnitzel zunächst in einem Gleichstromverga-
srer mit Luft und rückgesaugtem Rauchgas vorgetrocknet, entgast und teilweise
vergast. Eine Nachvergasung erfolgt mit zusätzlicher Luft in einer Wirbel-
schichtzone, die unter einem Kipprost im unteren Teil des Vergasers angeord-
net ist. In einem nachgeschalteten Zyklon wird der grobkörnige Staubanteil
(Korngröße > 0,05 mm), welcher vom Gasstrom mitgerissen wird, abgeschieden
und in die Wirbelschicht zurückgeführt. Der Vergaserwirkungsgrad beträgt
70 % und der elektrische Gesamtwirkungsgrad 20-25 %. Der Teergehalt im
Rohgas (370 mg/m³) ist nach Herstellerangaben zu hoch für einen dauerhaften
Motorbetrieb.

Ein bekanntes Beispiel für ein mehrstufiges Festbett-Vergasungsverfahren
gemäß (b) ist das Michel-Kim-Verfahren, das von der Firma Easymod Energie-
systeme GmbH in Barth weiterentwickelt wurde. Beim Michel-Kim-Vergaser
findet die Rohgaserzeugung innerhalb eines ersten Reaktors, eines Gleichstrom-
Unterschubvergasers, bei Temperaturen unter 900°C in der Oxidationszone
statt, wodurch Schlackenbildungen vermieden werden können. In einem nach-
geschalteten zweiten Reaktor, einem Gasreformer mit Wasserdampf, wird der
Gehalt an höheren Kohlenwasserstoffverbindungen im Rohgas von 500 mg/m³
auf 10 mg/m³ verringert (Michel-Kim 1995). Im dritten und letzten Reaktor,
1. Vergasungstechniken

einem zirkulierenden Flugstrom-Reduktionsreaktor, wird Reduktionskohle angereichert und in Aktivkohle überführt.

Abb. 4: Prinzip des Zweizonenvergasers

Das Rohgas hat nach Passage einer Gasreinigungsanlage einen relativ geringen Gehalt an Staub (< 0,5 mg/m₃), Ammoniak (< 5 mg/m₃) und Schwefelwasserstoff (ca. 2 mg/m₃). Durch die Dreistufigkeit des Verfahrens ist es möglich,
II. Vergasung und Pyrolyse von Biomasse

1.2 Wirbelschichtvergaser

Der Wirbelschichtvergaser (fluidized-bed gasifier) enthält ein Bett aus feinem Inertmaterial (zumeist Sand), das auf einer perforierten Platte ruht. Die Wirbelschicht entsteht, wenn das Vergasungsmittel oder das Träergas hinreichend rasch durch diesen Anströmboden fließt, das Inertmaterial aufwirbelt und dabei den zugegebenen Brennstoff von unten umströmt. Die Brennstoffteilchen, die mit 2-50 mm deutlich kleiner sind als bei den Festbettreaktoren (2-20 cm), werden stark miteinander und mit dem Bettmaterial vermischt. Bei der stationären Wirbelschichtvergasung bildet die Wirbelschicht eine definierte Oberfläche aus, die an eine kochende Flüssigkeit erinnert. Mit zunehmender Gasgeschwindigkeit expandiert die Wirbelschicht, bis der Feststoff nahezu gleichmäßig über die Reaktorhöhe verteilt ist. Die vom Gas mitgerissenen Partikel werden in einem Rückführzyklon abgeschieden und in den Reaktor zurückgeführt, wodurch sich der Zustand einer zirkulierenden Wirbelschicht (zWS) einstellt.

Durch die intensive Wärmeübertagung vom Bettmaterial an die Brennstoffteilchen sowie durch die geringere Teilchengröße und die turbulente Strömungsführung verringert sich die Aufenthaltszeit im Reaktor auf wenige Sekunden bis Minuten. Dies ist ein deutscher Vorteil gegenüber Festbettreaktoren, bei denen die Verweilzeit bei ½-1 Stunde liegt. Ein weiterer Vorzug der Wirbelschicht ist, daß die Reaktortemperatur innerhalb des Wirbelbetts ziemlich konstant ist, und daß dieses Temperaturniveau gut geregelt werden kann. Eine Betemperaturen um 850°C ist im Falle von Holz einerseits niedrig genug, um die Bildung von Schlacken zu verhindern, andererseits aber ausreichend,
um eine weitgehend vollständige Vergasung der Biomasse zu gewährleisten. Der Einsatz von Biomasse mit hohen Aschegehalten von bis zu 20 % und mit hohen Feuchtigkeiten (40-50 %) stellt für den Wirbelschichtvergaser kein unlösbares Problem dar. Allerdings sinkt die Qualität der erzeugten Rohgase, insbesondere bei der Vergasung mit Luft, mit zunehmender Feuchtigkeit des eingetragenen Biobrennstoffs. Der Teer- und Partikelgehalt im Rohgas von Wirbelschichtvergasern ist geringer als bei Gegenstromvergasern, aber höher als bei Gleichstromvergasern.

die Größe des Wärmetauschers und möglicherweise auch die Kosten der Anlage deutlich verringert werden.

1.3 Flugstromvergaser

Bei der für die Vergasung von Kohle entwickelten Flugstromvergasung wird der fein gemahlene Brennstoff vom Vergasungsmittel (Luft oder Sauerstoff) bei Temperaturen über 1200°C durch einen vergleichsweise langen Reaktor geblasen. Durch das hohe Temperaturniveau und durch die geringe Partikelgröße kann eine nahezu vollständige Vergasung bei einem Durchflug der Partikel durch den Reaktor innerhalb weniger Sekunden erreicht werden. Dadurch können hohe Vergasungsleistungen je m³ Reaktorvolumen erzielt werden, was insbesondere bei großen Vergaserleistungen ein Vorteil ist.

Bei der direkten Vergasung von Biomasse in Flugstromvergasern müßte man wegen des geringen Heizwertes und des Wassergehaltes die feingemahlene
1. Vergasungstechniken

Die im Prinzip mögliche, gemeinsame Vergasung von Biomasse und Kohle in bestehenden Kohlekraftwerken mit integrierter Flugstromvergasung ist vorerst eine eher theoretische Möglichkeit, da es gegenwärtig nur ein derartiges Kohlekraftwerk in Europa (in den Niederlanden) gibt. Jedoch gibt es erfolgreiche Versuche dazu: In einer Pilotanlage der Firma Noell in Freiberg ist die gemeinsame Vergasung von Weizenstroh und kolumbianischer bituminöser Kohle in Flugstromvergasern in verschiedenen Mischungsverhältnissen demonstriert worden (Madsen/Christensen 1995). Bei diesen Versuchen wurde das Stroh (90% < 0,25 mm) ähnlich fein vermahlen wie die Kohle, wodurch eine fast vollständige Kohlenstoffkonversion erreicht werden konnte. Weder bei der Zuführung des Biobrennstoffs noch bei anderen Verfahrensschritten traten technische Schwierigkeiten auf. Auch die Zusammensetzung der Schlackerküsten oder der Abwässer zeigten keine großen Unterschiede im Vergleich zur alleinigen Kohlevergasung. Wegen der Kosten für die Brennstoffaufbereitung und die pneumatische Zuführung des feinen Strohs wurden auch Flugstromvergasungsversuche mit größeren, realistischeren Teilchengrößen ($d_{50} = 1-2$ mm) durchgeführt. Hierbei zeigte sich, daß die Aufenthaltsdauer im Flugstromvergaser zu kurz war, um eine vollständige Vergasung des Strohs und eine zufriedenstellende Kohlenstoffkonversion zu erreichen.

1.4 Pyrolyse von Biomasse

II. Vergasung und Pyrolyse von Biomasse

(autothermer Prozeß) und so die erforderliche Wärme bereitstellen. Die autotherme Pyrolyse ist genaugenommen keine Pyrolyse mehr, sondern bereits eine autotherme Vergasung.

Bei der Pyrolyse als eigenständigem Verfahren werden die Pyrolyseprodukte im Gegensatz zur Vergasung nicht weiter thermochemisch umgesetzt, sondern dem Reaktionsraum entzogen und abgekühlt. Die Reaktionsprodukte bei der Pyrolyse sind:

- ein fester, koksähnlicher Pyrolyserückstand,
- organische Dämpfe, die bei Abkühlung als Pyrolyseöle auskondensieren,
- und brennbare Pyrolysegase (Heizwert: 10-15 MJ/m³) mit einem hohen Anteil gesättigter und ungesättigter Kohlenwasserstoffverbindungen.

Die Gründe für eine Pyrolyse, die apparativ getrennt von der Vergasung durchgeführt wird, können sein
1. Vergasungstechniken

- das Ziel, einen möglichst hohen Anteil an Pyrolyseöl zu erzielen, um dar- aus einen gut transportablen Energieträger oder Spezialchemikalien zu gewinnen,
- das Bestreben, die Probleme mit der Ascheerweichung und der Teerbildung durch die räumliche Trennung des Pyrolyse- und (anschließenden) Vergasungsverfahrens zu verringern,

Auch nach entsprechenden Aufbereitungsschritten müssen die Verbrennungsmotoren an die Eigenschaften des Pyrolyseöls angepaßt werden, um einen zuverlässigen Betrieb von Motoren zu erreichen. Mit Ausnahme der NOx-Emissionen, die aufgrund der niedrigen Verbrennungstemperaturen (hoher Wassergehalt) gering sind, liegen die Schadstoffemissionen über denen beim
II. Vergasung und Pyrolyse von Biomasse

Benzinbetrieb. Zusammenfassend läßt sich sagen, daß die Erzeugung eines Kohlenwasserstoff-Kraftstoffs über die Flash-Pyrolyse technisch machbar ist, aber bis zu einer Kommerzialisierung des Verfahrens noch viele Probleme zu lösen sind.

1.5 Eignung der Verfahren für verschiedene Biobrennstoffe

Gegenstromvergaser sind hinsichtlich des Risikos von Kanalbildungen und Verstopfungen besser geeignet zur Vergasung von festen Agrobrennstoffen als
Gleichstromvergaser, bei denen in der Oxidationszone sehr hohe Temperaturen auftreten können. Die Entwicklung von speziellen Techniken zur Vergasung von festen Agrobrennstoffen steckt noch in den Anfängen, obwohl die ersten Experimente zur Strohvergasung schon Ende der 70er und Anfang der 80er Jahre stattfanden.

Ebenfalls speziell für die Vergasung von biogenen Abfällen und Reststoffen mit hohen Ascheanteilen und niedrigen Ascheerweichungstemperaturen entwickelt wurde der verschlackende Gegenstromvergaser von der Firma Kvaerner in Norwegen. Bei diesem Vergaser wird das Rohgas durch die Zuführung von sekundärem Sauerstoff gereinigt, der die Temperaturen in der Nachverbrennungskammer auf ca. 1.100°C ansteigen läßt. Der Gesamtwirkungsgrad des Vergasers ist wegen des energieintensiven Gasteinigungssystems niedriger als bei anderen Verfahren.

Das von der Umwelt- und Energietechnik Freiberg GmbH (UBT) in Freiberg/Sachsen entwickelte "Carbo-V-Verfahren" scheint ebenfalls ein zur Strohvergasung technisch geeignetes Verfahren zu sein. Das Verfahren basiert auf dem Gleichstromprinzip, nutzt aber gleichzeitig die Vorteile der Wirbelschichtvergasung. Durch die räumliche Trennung der Pyrolyse von der Oxidation wird Pyrolysekoks erzeugt, der nach Vermahlung zusammen mit dem Pyrolysegas in einem nachgeschalteten Flugstromvergaser bei Temperaturen zwischen 1.200°C und 1500°C umgesetzt werden kann. So entstehen keine Teerverbindungen und die Asche kann flüssig abgezogen werden. Das nahezu teerfreie Rohgas wird anschließend abgekühlt und einer Entstaubung mit Hilfe von Zyklonen sowie einer Gaswäsche zur Entfernung verbliebener Spurenverunreinigungen unterzo-
gen (BGT 1996). Das technisch interessante Konzept, das für Anlagen mit Kapazitäten zwischen 0,3 MW$_{el}$ und 5 MW$_{el}$ Netto-Leistung gedacht ist, befindet sich noch in der Planungs- und Entwicklungsphase. Die Nachteile des Verfahrens sind sein komplexer Betriebsablauf und seine hohen Anforderungen an die Technik hinsichtlich des flüssigen Abzugs der Asche oder der Vergasung des vermahlenen Pyrolysekoks im Flugstroomvergaser.

Auch die allotherme Wirbelschichtvergasung mit Wasserdampfeinspritzung (Steam reforming) ist, weil sie bei etwas niedrigeren Reaktionstemperaturen betrieben werden kann, ein geeignetes Verfahren zur Vergasung von festen Agrobrennstoffen. Bei der Biomassevergasung im Steamreformer wird ein wasserstoffreiches Rohgas mit einem deutlich höheren Heizwert als bei der Vergasung mit Luft erzeugt.

Bei der Entwicklung von speziellen Techniken zur Vergasung von Stroh und anderen festen Agrobrennstoffen gibt es offensichtlich einige vielversprechende Ansätze. Um den heutigen technischen Stand der Holzvergasung zu erreichen, ist jedoch ein nicht unerheblicher Forschungs- und Entwicklungsaufwand erforderlich.

2. Gasreinigung

Die Gase aus der Vergasung oder Pyrolyse von Biomasse unterscheiden sich von den Rauchgasen bei Verbrennungsprozessen außer in ihrem Heizwert in verschiedener Hinsicht. Der wesentlichste weitere Unterschied besteht darin, daß die Rohgase beträchtliche Mengen an Teer enthalten, welche in einem Verbrennungsabgas höchstens in Spuren vorhanden sind. An unerwünschten Komponenten enthält das Rohgas außerdem noch:

- Staub und Feinpartikel,
- Alkalien,
- Chlorwasserstoff und andere Halogenverbindungen,
- Schwefelverbindungen und
- Stickstoffverbindungen.

Die Anforderungen zur Partikelentfernung werden maßgeblich vom Vergasersystem und von der Art der Gasnutzung (Gasmotor, Gasturbine, Brennstoffzelle) bestimmt und sind weitgehend unabhängig von der Brennstoffart. Im Gegensatz dazu sind Art und Aufwand zur Gasreinigung von anderen störenden Komponenten mehr oder weniger stark abhängig von der Art der als Brennstoff einge-

- der chemischen Zusammensetzung und Feuchtigkeit des Biobrennstoßs sowie seiner Stuckigkeit,
- dem Vergasertyp, der Anlagengröße und den Betriebsbedingungen sowie
der angestrebten Gasnutzung.

2.1 Partikel und Alkalien

Der Staubgehalt (und auch der Teergehalt) im Rohgas werden ganz entscheidend von dem Vergasertyp und den Vergasungsbedingungen beeinflußt. Die Staubbelastung des Rohgases ist bei zirkulierenden Wirbelschichtvergasern mit durchschnittlich 20 g/m³ Gas deutlich höher als bei Festbettvergasern (Tab. 2). Die höheren Partikelgehalte im Rohgas aus der zirkulierenden Wirbelschichtvergasung gegenüber einer stationären Wirbelschichtvergasung sind eine Folge der kleineren Brennstoffstücke und höheren Strömungsgeschwindigkeiten.

Die Partikelentfernung kann auch durch eine Kaltgasreinigung mit Gewebefiltern, die eine kommerzielle Technik zur Staubreinigung bei Gastemperaturen < 300°C darstellen, erfolgen, sofern zuvor eine weitgehende Entfernung der Teerverbindungen stattgefunden hat. Der Einsatz von Gewebefiltern hat andererseits den Nachteil, dass beim Abkühlen des Rohgases eine Verkieselung der Gewebefilter erfolgt und außerdem bei Temperaturen unter 100°C wässriges Kondensat anfällt.

Tab. 2: Partikel- und Teergehalte im Primärgas aus verschiedenen Vergasertypen

<table>
<thead>
<tr>
<th>Vergasertyp</th>
<th>Partikel (g/m³)</th>
<th>Teere (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spanne Mittelwert</td>
<td>Spanne Mittelwert</td>
</tr>
<tr>
<td>Gegenstromvergaser</td>
<td>0,1-3 1</td>
<td>10-100 50</td>
</tr>
<tr>
<td>Gleichstromvergaser</td>
<td>0,01-8 1</td>
<td>0,01-6 0,5</td>
</tr>
<tr>
<td>stationäre WS-Vergaser</td>
<td>1-100 4</td>
<td>1-23 12</td>
</tr>
<tr>
<td>zirkulierende WS-Vergaser</td>
<td>8-100 20</td>
<td>1-30 8</td>
</tr>
</tbody>
</table>

Quelle: Graham und Bain 1992

2. **Gasreinigung**

Durch das Vorschalten eines Zyklons wird der Anteil grober Staubpartikel stark verringert und hierdurch die Staubfracht des Keramikfilters maßgeblich reduziert. Der Einsatz eines hoechstzertifizierten Zyklons zur Vorreinigung kann jedoch dazu führen, daß der Reststaubgehalt im Gas so fein ist, daß er tief in die Strukturen des Keramikfilters eindringt und von dort kaum mehr entfernt werden kann. Deshalb werden in Verbindung mit Keramikfiltern nur einfache oder modifizierte Zyklone eingesetzt, die auch größere Partikel passieren lassen.

Keramikfilter aus granuliertem SiC stehen kurz vor der Kommerzialisierung für Betriebstemperaturen von 250–400°C (Seville et al. 1996). Im Labor- und
Pilotmaßstab konnten mit Keramikfiltern Partikelreinigungen im Gas von < 1 mg/m³ erzielt und damit die Anforderungen der Gasturbinenhersteller erfüllt werden (Nieminen et al. 1996b). Ein kritisches Problem als die Verklebung der Porenstrukturen durch feine Kohlenstoffpartikel ist die Langzeitstabilität des Keramikfilters. Bei höheren Betriebstemperaturen können Alkalien im Rohgas bei to ngelbundenen SiC-Keramikfiltern mit den Bindematerialien reagieren und Deformationen der granularen Strukturen hervorrufen. Die Alkalien können eutektische Schmelzpunkte mit Komponenten des Keramikfilters eingehen, die zu Sintervorgängen und dadurch zu einer beeinträchtigten Leistungsfähigkeit des Filters führen.

Die Lebensdauer der Keramikfilter kann auch durch thermische Ermüdung aufgrund der wiederholten Filterreinigung durch Gegendruckstoße und durch sogenannte hot spots, die durch Entzündung von kohlenstoffreichem Material an der Filteroberfläche entstehen, begrenzt werden. Von der Firma Schuhmacher in Crailsheim entwickelte neue Filtermaterialien sollen das Potential besitzen, komplexe zusammengesetzte, aggressiv wirkende Gasgemische, lokal hohe Temperaturen von bis zu 1.000°C und hohe Gasdrücke (bis 30 bar) auszuhalten (Schulz et al. 1996).

und Teerverbindungen aufgrund der klebrigen Oberflächen von Alkalien, die an Partikelflächen auskondensieren, ansteigt (Padhan et al. 1995). Die Folge ist, daß bereits geringe Gehalte an Alkalien zu teilweise steingroßen Agglomeratio-

nen und Entwirbelungen des Bettens führen, die das Bettverhalten in Wirbel-

schichtvergasern drastisch verändern und schwerwiegende Betriebsprobleme im

Vergaser sowie bei den nachfolgenden Gasreinigungssystemen hervorrufen

können.

Eine Alternative zur Alkalienbindung mit Quarzsand ist der Einsatz multi-
funktioneller Sorbenten zur Alkalienabscheidung bei höheren Temperaturen,
mit deren Suche allerdings erst vor kurzem begonnen worden ist. Erste Versu-

che mit speziellen Alkalienfängern auf der Basis von aktivierten, kalziumim-
prägnierten Aluminiumsilikaten haben bei Temperaturen von 800-1.000°C und
unter erhöhtem Druck (5-10 bar) für Natrium und Kalium sehr gute Adsorptions-
leistungen zwischen 54 % und 100 % ergeben (Jaunu/Orjala 1996). Die Ergebnis-

nisse haben außerdem gezeigt, daß die multifunktionellen Sorbenten gleichzeitig
gasförmige Schwermetalle (z.B. Blei) binden können, und daß positive Interak-

tionen hinsichtlich einer Verringerung der NOx-Emissionen zu erwarten sind.

2.2 Teerverbindungen

Die beste Methode, um ein teerfrees Gas zu erhalten, ist die Vermeidung der
Bildung von Teerverbindungen im Vergasungsreaktor. Viele Hersteller von
Festbettvergasern behaupten, mit ihren Vergasern ein Rohgas liefern zu kön-

nen, das nur sehr geringe Teerkonzentrationen enthält. Die Praxis zeigt jedoch,
daß sowohl die Vermeidung von Teerbildungsprozessen im Reaktor als auch die
spätere Teerzerstörung keine einfache Angelegenheit ist. Während der Pyrolyse
entstehen Teerverbindungen, deren Gesamtmenge bis zu einem Temperaturni-
veau von ca. 600°C ansteigt und danach mit weiter steigenden Temperaturen
ieder abnimmt. Die größten Teermengen enthält das Rohgas aus der Gegen-
stromvergasung, bei der das heiße Primärgas aus der Oxidationszone die kühl-
ren Zonen des Brennstoffbetts bei intensiver Teerbildung durchströmt. Hier
finden die Pyrolysereaktionen und die Trocknung des Brennstoffes statt. Die
dort herrschenden Temperaturen reichen nicht aus, um die Pyrolysegase zu
spalten. Die Teergehalte im Rohgas aus Gegenstromvergasern können deshalb
um mehr als einen Faktor 100 höher sein als bei Gleichstromvergasern (Kap.
II.1.i, Tab. 1).

2. Gasreinigung

Teerverbindungen wirksam zerlegt werden. Dolomite können einen großen Teil der Teerverbindungen (Phenole und Aromate) spalten und den Teergehalt im Gas auf < 65 mg/m₃ senken (Pitcher/Lundberg 1996). Sie sind jedoch auch unter extremen Bedingungen (900°C und große Mengen an Dolomit) nicht in der Lage, besonders stabile aromatische Teerverbindungen, wie das Naphthalin, nennenswert abzubauen (Myren et al. 1996). Eine gute Wirkung auch auf schwer abbaubare Teerverbindungen haben Sulfitkatalysatoren auf Nickel- oder Molybdänbasis bis zu einem Gasdruck von 20 bar gezeigt (Niemen et al. 1996b). In Laborversuchen an der Universität von Complutense, Spanien konnte der Teergehalt im Rohgas nach einem Dolomitbett von 5-30 g/m₃ auf 0,1-1,2 g/m₃ und nach einem nachgeschalteten Nickelbett auf 1-100 mg/m₃ reduziert werden (Corella et al. 1995). Eine Bestätigung dieser guten Reinigungsleistung im technischen Maßstab und im Dauerbetrieb steht allerdings noch aus.

2.3 Schwefel- und Halogenverbindungen

Der Schwefelgehalt von Biobrennstoffen ist im Vergleich zu Kohle gering, und deshalb sind im allgemeinen keine speziellen Entschwefelungsmaßnahmen bei der Biomassevergasung erforderlich. In Wirbelschichtvergasern kann der Schwefelgehalt im Rohgas durch die Zugabe von bestimmten Bettmaterialien (z.B. Kalkstein oder Dolomit) verringert werden. Diese Art der primären Entschwefelung ist thermodynamisch begrenzt, und im Falle sehr scharfer Restriktionen hinsichtlich des Schwefelgehalts im Gas könnten zusätzliche, sekundäre Entschwefelungsschritte erforderlich sein. Dies ist dann der Fall, wenn der Ge-

halt an H₂S im Gas so hoch ist, daß Katalysatoren (zur Gasreformierung oder CO-Konvertierung) vergiftet werden könnten.

oxid-Katalysatoren, die völlig unempfindlich gegenüber H₂S sind, bei hohen Temperaturen arbeiten und mit Wasserdampf regeneriert werden können (Berg et al. 1996).

2.4 Stickstoffverbindungen

Während des Vergasungsvorganges selbst werden als Folge der sauerstoffarmen Reaktionsatmosphäre praktisch keine Stickoxide gebildet. Deshalb kann die Vergasung bei einigen Arten der Gasverwendung zu Gesamtsystemen führen, die sich durch besonders niedrige NO_{x}-Emissionen auszeichnen. Bei der Vergasung entstehen jedoch aus dem organisch gebundenen Biomasse-Stickstoff reaktive Stickstoffverbindungen, von denen Ammoniak (NH_{3}) und Cyanwasserstoff (HCN) die bedeutendsten sind. Wenn das NH_{3}-haltige Gas verbrannt wird, können hohe NO_{x}-Emissionen gebildet werden. Die reaktiven Stickstoffverbindungen aus dem Biobrennstoff stellen bei manchen Gasverwendungen die einzigen nennenswerte Quelle der NO_{x}-Bildung bei der Gasnutzung dar. Dies gilt insbesondere dann, wenn die Bildung thermischer NO_{x} aufgrund der geringen Verbrennungstemperaturen bei der Gasnutzung vernachlässigbar ist (Leppälähti et al. 1996).

Der Gehalt an reaktiven Stickstoffverbindungen im Gas bzw. die Höhe der NO_{x}-Emissionen können verringert werden durch

- Minimierung der Bildung von NH_{3}-Verbindungen bei der Vergasung von Biomasse,
- Kühlung und Wäsche des Rohgases,
- katalytische oder selektiv katalytische Heißgasreinigung,
- durch verwendungsseitige Maßnahmen (z.B. einen niedrigen NO_{x}-Brenner)
3. *Gasnutzung*

- oder durch Abgasreinigungsmaßnahmen (z.B. eine selektive katalytische Reduktion).

Eine in der Kraftwerkstechnik bewährte Variante der katalytischen Heißgasreinigung ist die sogenannte selektive katalytische Oxidation (SOC) von NH₃. Bei diesem Verfahren werden dem Gas geeignete Reaktionspartner (N₂, O₂) zugeführt, die an einer katalytischen Oberfläche (z.B. Aluminiumoxid) mit NH₃ reagieren und es in N₂ umwandeln. Hierbei kann eine höhere Konversionsrate bei gleichzeitig relativ niedrigen Temperaturen (350-600°C) erzielt werden.

3. *Gasnutzung*

Die Nutzung des Gases aus der Biomassevergasung kann auf verschiedenen Wegen erfolgen. Das Gas kann direkt verbrannt und die dabei erzeugten Rauchgase können
- zur Erzeugung von Heiz- oder Prozeßwärme,
- zur Produktion von Dampf für eine Dampfturbine,
- zum Antrieb eines Stirlingmotors oder
- zum Antrieb einer indirekten befeuerten Gasturbine verwendet werden.

Das Gas kann aber auch
- direkt in einem Gasmotor genutzt,
- zum Antrieb von Gasturbinen (ggf. mit Dampfturbine) verwendet,
- zur Methanol- oder Wasserstoffherstellung herangezogen werden
- als Brenngas in Brennstoffzellen eingesetzt werden.

Die beiden zuletzt genannten Verwertungswege setzen voraus, daß die Biomassevergasung mit Sauerstoff oder Dampf oder äußerer Wärmezufuhr erfolgt, und das Gas zur Erhöhung des Wasserstoffanteils einer CO-Konversion unterzogen wird.
3.1 Dampfmotoren und -turbinen

3.2 Stirlingmotoren

Der Stirlingmotor ist ein von außen beheizter Motor, in den weder der Brennstoff (d.h. das Gas aus der Biomassevergasung) noch die Rauchgase aus der Verbrennung des Gases gelangen. Es handelt sich dabei um eine Kolbenmaschine, die mit einem in den Zylindern verbleibenden Arbeitsgas (Helium, Wasserstoff, Stickstoff oder Luft) betrieben wird. Das Arbeitsgas wird in einem

Die Fußarbeiten konzentrieren sich gegenwärtig sowohl auf die Entwicklung von kleinen Stirlingmotoren mit einem Leistungsbereich von 3-10 kWₑ als auch von größeren Stirlingmotoren der Größe der Klasse 30-150 kWₑ (Carlsen 1996). Mit modernen Stirlingmotoren können elektrische Wirkungsgrade von 20-30 % erreicht werden (Tab. 3). Der erzielbare Wirkungsgrad hängt von der nutzbaren Temperaturdifferenz ab. Um eine relativ große Differenz zu bekommen, sind vergleichsweise teure Spezialwerkstoffe, die hohe Temperaturen aushalten können und eine lange Lebensdauer haben, erforderlich. Bei biogen be- triebenen Feuerungen werden Temperaturen von bis zu 800°C am Erhitzerkopf des Motors als Grenze angesehen.
II. Vergasung und Pyrolyse von Biomasse

Tab. 3: Stand der Entwicklung von Stirlingmotoren

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>AG</th>
<th>kW_{el}</th>
<th>WG (%)</th>
<th>Prototyp</th>
<th>Bh</th>
<th>Erfahrungen mit Biomasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heidelberg-Motor, D</td>
<td>He</td>
<td>30</td>
<td>30</td>
<td>1</td>
<td>1.000</td>
<td>Keine Tests</td>
</tr>
<tr>
<td>Solo, D</td>
<td>He</td>
<td>11</td>
<td>27,5</td>
<td>> 150</td>
<td>10.000</td>
<td>Verstopfungen</td>
</tr>
<tr>
<td>CFIC, A</td>
<td>He</td>
<td>5</td>
<td>22-24</td>
<td>1</td>
<td>< 100</td>
<td>Keine Tests</td>
</tr>
<tr>
<td>Stirl. Dynam., India</td>
<td>Luft</td>
<td>2,5</td>
<td>10</td>
<td>100</td>
<td>> 1.000</td>
<td>Gute Ergebnisse</td>
</tr>
<tr>
<td>Joanneum, A</td>
<td>N_{2}</td>
<td>3</td>
<td>k.A.</td>
<td>1</td>
<td>k.A.</td>
<td>Gute Ergebnisse</td>
</tr>
<tr>
<td>Sunpower, USA</td>
<td>He</td>
<td>5</td>
<td>> 20</td>
<td>1</td>
<td>< 100</td>
<td>Nicht gebaut</td>
</tr>
<tr>
<td>SES Eng., UK</td>
<td>Luft</td>
<td>10-20</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>Keine Tests</td>
</tr>
<tr>
<td>Danstoker/DTU, DK</td>
<td>He</td>
<td>36</td>
<td>22</td>
<td>1</td>
<td>120</td>
<td>Gute Ergebnisse</td>
</tr>
</tbody>
</table>

AG = Arbeitsgas, WG = Wirkungsgrad, Bh = Betriebsstunden

Quelle: Carlsen 1996

Die Erfahrungen mit dem Einsatz von Stirlingmotoren beschränken sich auf Prototypen mit Leistungen unter 40 kW_{el}, die nur selten mit Gas aus Biomassevergaser genutzt wurden. Die in Indien eingesetzten Kleinmotoren sind einfach gebaut und verwenden Luft als Arbeitsmedium. Sie arbeiten mit geringen Druckdifferenzen und haben einen niedrigen elektrischen Wirkungsgrad (Tab. 3). Aggregate mit einer elektrischen Leistung von 100-250 kW_{el} lassen sich mit den technisch einfachen Stirlingmotoren nicht realisieren. Die aufwendigeren Stirlingmotoren benutzen Helium als Arbeitsgas und streben hohe Temperatur- und Druckdifferenzen an.

Aufwendigere Konstruktionen, hochwertige und hitzebeständige Dichtungs- und Werkstoffmaterialien sowie besondere Arbeitsmedien führen zu besseren Wirkungsgraden, aber auch zu höheren Herstellungskosten. Die Preise für einen Stirlingmotor (30 kW_{el}) ohne Feuerung liegen bei einer Kleinserien-Produktion zwischen 4.000 DM/kW_{el} und 5.000 DM/kW_{el} (Walter 1994). Bei einer Serienfertigung der Stirlingmotoren in größeren Stückzahlen ist bei standardisierten modularen Techniken mit erheblichen Kostensenkungen zu rechnen. Dennoch dürften die Stirlingmotoren auf absehbarer Zeit gegenüber den gegenwärtig je kW_{el} deutlich billigeren Gasmotoren nicht konkurrenzfähig sein.
3.3 Gasmotoren

Der Heizwert des Schwachgases, das durch Vergasung von Biomasse mit Luft erzeugt wird, ist mit etwa 3-5 MJ/m³ erheblich geringer als der von Methan (36 MJ/m³). Dafür muß beim Betrieb des Gasmotors mit Erdgas zur Erzielung einer vollständigen Verbrennung erheblich mehr Luft je m³ Gas zugeführt werden als beim Einsatz von Schwachgas. Im Ergebnis unterscheiden sich die den Brennraum füllenden Gas-Luft-Gemische in ihrem Heizwert nicht dramatisch voneinander. Der Heizwert im Brennraum liegt bei Erdgas bei 3,6 MJ/m³ gegenüber 2,2 MJ/m³ bei Schwachgas aus der Biomassevergasung. Wegen der langsamen Flammausbreitungs- und Verpuffungsgeschwindigkeiten
bei der Gasverbrennung kann der elektrische Wirkungsgrad der Gasmotoren
mit Gas aus fossilen Brennstoffen oder Kraftstoffen üblichen Durch-
chnittswert von 33 % nicht erreichen, sondern ist mit etwa 30-31 % zu veran-
schlagen (Walter 1994).

Beim Einsatz von Gasmotoren in Blockheizkraftwerken (BHKW) werden
häufig mehrere, in Reihe geschaltete Gasmotor-Module zusammengefügt.
Durch eine Gasverdichtung oder den Einsatz großvolumiger Gasmotoren kön-
nen ähnliche Leistungen erreicht werden wie bei Erdgas-BHKW. Die Strom-
kennzahl, die das Verhältnis von elektrischer und thermischer Leistung angibt,
liegt bei guten Holzgas-BHKW mit 0,3 und 0,4 deutlich höher als bei Dampf-
kraftprozessen (0,15-0,2). Mögliche Schwankungen des Wärmebedarfs können
durch Zu- oder Abschalten einzelner Module ausglichen werden. Die BHKW,
deren elektrische Leistungsspanne zwischen 50 kWel und 2.000 kWel liegt, sind
meist wärmegemäßt und eignen sich zur Nahwärmeversorgung. Gasmotoren
werden wegen ihres besseren elektrischen Wirkungsgrades im Leistungsbereich
< 2 MWel den Gasturbinen vorgezogen. Der elektrische Wirkungsgrad von
BHKW < 1 MWel mit atmosphärischer Vergasung von Biomasse und motori-
scher Gasnutzung bewegt sich zwischen 21 % und 25 % bei Anlagen mit 100
kW bis 2 MW elektrischer Leistung.

Wegen der Teerproblematik sind bis heute keine motorischen Anwendungen
von Schwachgas aus Gegenstromvergasern bekannt. Es gibt jedoch verschiede-
dne Anstrengungen, um dieses Ziel für Gase aus Holzvergasern zu erreichen. Die
dänische Firma Vølund will z.B. das Gas aus einem seit 1993 mit Holz betrie-
benen 5 MW-Gegenstromvergasern nach dessen katalytischer Reinigung zum
Antrieb eines Motors einsetzen. In Deutschland planen die Dieselmotorenwerke
Leipzig (DML) GmbH ein Holzgas-BHKW, das einen Gesamtwirkungsgrad von
c. 87 % haben soll und ca. 6.500 DM/kWel kosten würde (Steinbrecher 1996).

3.4 Gasturbinen

Die Verwendung des Gases aus Biomassevergasern in Gasturbinen ist technisch
möglich, aber noch nicht erprobt und noch nicht Stand der Technik. Vorausset-
zung für eine erfolgreiche Gasnutzung in Gasturbinen ist sowohl eine geeignete
Konditionierung des Gases als auch eine gewisse Anpassung der Brenner der
für den stationären Betrieb mit Erdgas oder für Flugzeuge entwickelten Gastur-
binen. Wenn diese Anpassungen gut gelingen, werden hierdurch Möglichkeiten
zur Nutzung effektiver Kombiprozesse mit G für Gas aus Biomassevergasern
3. Gasnutzung

erschlossen, welche sich mit Erdgas als Brennstoff in Heizkraftwerken und Blockheizkraftwerken bewährt haben. Hinsichtlich der Größenklasse kommt dabei hauptsächlich der Bereich zwischen 2 MW\textsubscript{el} und 20 MW\textsubscript{el} in Frage. Unter 2 MW\textsubscript{el} haben Gasturbinen einen geringen Wirkungsgrad bei der Stromerzeugung, über 20 MW\textsubscript{el} werden die Versorgungsprobleme mit festen Biobrennstoffen in der Regel zu groß.

Unklar ist auch, ob insbesondere bei der Nutzung des Gases aus der Vergasung von festen Agrobrennstoffen zusätzliche Maßnahmen zur Gasreinigung ergriffen werden müssen, um den Gehalt an Schwefel- und Halogenverbindungen auf ein für Gasturbinen erträgliches Maß (Tab. 4) zu verringern.

Sofern das gereinigte Gas stark verdichtet werden muß, kann dies mit handelsüblichen Kompressoren erfolgen, wenn das Gas zuvor auf unter 100°C abgekühlt wurde. Dabei können gasförmige Teerverbindungen kondensieren und im nachgelagerten Kompressor zu Verklebungs- und Korrosionserscheinungen führen. Eine beschleunigte Abnutzung und ein höherer Aufwand zur Wartung
und Instandhaltung sind die Folge. Deshalb bestehen bei der Gasnutzung in Gasturbinen Anforderungen an die Teerarmut vor der Verdichtung, obwohl die Teerverbindungen im Brenner der Gasturbine verbrannt und in unbedenkliche Komponenten zerlegt würden.

Tab. 4: Tolerierbare Verunreinigungen im Brenngas für Verbrennungskammern von Gasturbinen (Siemens Model VX4.3A)

<table>
<thead>
<tr>
<th>Verunreinigungen</th>
<th>Formeln</th>
<th>Belastungsgrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asche(^1)</td>
<td></td>
<td>2 ppmw</td>
</tr>
<tr>
<td>Halogene</td>
<td>HCl u. HF</td>
<td>1 ppmw</td>
</tr>
<tr>
<td>Schwefelverbindungen</td>
<td>H(_2)S, COS, CS(_2)</td>
<td>20 ppmV</td>
</tr>
<tr>
<td>Alkalien</td>
<td>Na u. K</td>
<td>0,03 ppmw</td>
</tr>
<tr>
<td>Schwermetalle</td>
<td>V u. Pb</td>
<td>0,05 ppmw</td>
</tr>
<tr>
<td>Kalzium</td>
<td>Ca</td>
<td>1 ppmw</td>
</tr>
</tbody>
</table>

\(^1\) Korngröße: 2-20 μm: 75 % u. 0-2 μm: 92,5 %

Quelle: Kloster et al. 1996

hitze- kessel erzeugte, überhitze Heißdampf wird in die Gasturbin eingedüst (Abb. 5).

Abb. 5: Cheng-Prozeß mit integrierter Biomassevergasung

3.5 Wasserstoff- und Methanolproduktion

In beiden Fällen ist es trotz einer relativ günstigen Ausgangskonzentration von 20-60 % Wasserstoff im Rohgas erforderlich, die Wasserstoffkonzentration im Gas auf Kosten des Begleitgases Kohlenmonoxid (CO) über einen katalytisch gestützten Gaskonversionsschritt zu erhöhen. Die CO-Konversion ist eine bewährte kommerzielle Technologie, die im großen Maßstab zur Herstellung

Abb. 6: Prozeßschritte zur Wasserstoff- und Methanolgewinnung aus Biomasse

Bei der Herstellung von hochangereichertem Wasserstoff muß das Verhältnis zwischen H_2 und CO sowie zwischen H_2 und anderen Gasbestandteilen möglichst hoch sein. Die Gewinnung von hochreinem Wasserstoff aus dem konver-
tierten, wasserstoffreichen Gasgemisch kann auf verschiedenen Wegen stattfinden. Möglich ist der Einsatz

- einer Druckwechseladsorptionsanlage (Pressure Swing Adsorption),
- eines Dampf-Eisen-Prozesses oder
- einer Palladiummembran.

Das größte Einsatzgebiet für Wasserstoff ist derzeit die Erzeugung von Ammonium und Methanol sowie der Einsatz in Erdölraffinerien zum Hydrocrack-
II. Vergasung und Pyrolyse von Biomasse

...ing. Der hierbei verwendete Wasserstoff, von dem weltweit jährlich rd. 600 Milliarden m³ gehandelt werden, stammt fast ausschließlich aus fossilen Rohstoffen, meist schwerem Rohöl oder Erdgas. In bisher sehr geringen Mengen wird Wasserstoff bereits seit längerem als Treibstoff für Raumfahrtaufgaben und als Brenngas in Brennstoffzellen, die Wärme, Strom und Trinkwasser für die Astronauten bereitzustellen, eingesetzt. Durch die erfolgreiche Entwicklung wasserstoffbetriebener Brennstoffzellen könnte der Wasserstoffbedarf im stationären Bereich und zu einem noch späteren Zeitpunkt möglicherweise auch im Bereich des Kraftfahrzeugverkehrs stark ansteigen.

3.6 Brennstoffzellen

Brennstoffzellen können höhere elektrische Wirkungsgrade erreichen als dies über andere Energiegewinnungsprozesse möglich ist, weil sie nicht den bei
Wärme-Kraft-Maschinen wirkenden Begrenzungen des Carnotschen Kreisprozesses unterworfen sind. Der Wirkungsgrad der Brennstoffzellen wird u.a. von der entnommenen Leistung und der Stromdichte (Stromstärke bezogen auf die Elektrodenfläche) bestimmt. Mit steigender Strombelastung nimmt die Zellspannung und damit der Wirkungsgrad von Brennstoffzellen ab. Bei sehr hohen Strombelastungen fällt die Zellspannung durch Diffusionshemmung und damit der Wirkungsgrad drastisch ab. Betreibt man eine Brennstoffzelle bei geringer Leistungsdichte oder im Teillastbereich, steigen Spannung und Wirkungsgrad an, was allerdings auf Kosten der Leistungsdichte geht.

Abb. 7: Prinzip einer Wasserstoff-/Sauerstoff-Brennstoffzelle

\[\text{Anode: } H_2 \rightarrow 2H^+ + 2e^- \]
\[\text{Kathode: } \frac{1}{2} O_2 + 2H^+ + 2e^- \rightarrow H_2O \]
\[\text{Gesamtreaktion: } H_2 + \frac{1}{2} O_2 \rightarrow H_2O \]

Da Brennstoffzellen hohe Wirkungsgrade bei kleinen Leistungseinheiten möglich machen, bieten sie gute Voraussetzungen für einen Einsatz in dezentralen...
stationären Anlagen mit Kraft-Wärme-Kopplung und möglicherweise auch im mobilen Bereich. Eine einzelne Brennstoffzelle ist prozeßbedingt auf eine recht geringe elektrische Leistung beschränkt, weshalb eine Stromversorgung in der Größenordnung von einigen 100 kW$_{el}$ aus vielen Kleinmodulen (Stacks) besteht. Dank dieses modularen Aufbaus ist das Gesamtsystem beliebig erweiterungs- und anpassungsfähig.

Neben dem potentiell hohen elektrischen Wirkungsgrad sind als weitere Vorteile der Brennstoffzelle gegenüber konventionellen Wärme-Kraft-Maschinen zu nennen:

- das gute Teillastverhalten,
- die Modularität und flexible Betriebsweise,
- wenig wartungs- und geräuschintensive, bewegte Teile
- und die sehr niedrigen Schadstoffemissionen.

Die Brennstoffzellentypen werden anhand ihrer Betriebstemperaturen in Niedertemperatur-Brennstoffzellen und Hochtemperatur-Brennstoffzellen unterteilt und nach der Art ihres ionenleitenden Elektrolyten benannt. Am häufigsten werden die folgenden Bezeichnungen und Abkürzungen verwendet:

- Alkalische Brennstoffzelle bzw. Alkaline Fuel Cell (AFC),
- Phosphorsaure Brennstoffzelle bzw. Phosphoric Acid Fuel Cell (PAFC),
- Polymerelektrolyt-Brennstoffzelle bzw. Proton Exchange Membrane Fuel Cell (PEMFC),
- Karbonatschmelzen-Brennstoffzelle bzw. Molten Carbonate Fuel Cell (MCFC),
- Oxidkeramische Brennstoffzelle bzw. Solid Oxide Fuel Cell (SOFC).

In Tabelle 5 finden sich für die genannten Brennstoffzellentypen Angaben zum einsetzbaren Brenngas und zur Zusammensetzung der Anoden und Kathoden sowie der dort ablaufenden Reaktionen. Der von einer Brennstoffzelle erzielbare Wirkungsgrad liegt gegenwärtig zwischen ca. 60 und 70 %. Bei den Niedertemperatur-Brennstoffzellen und bei der PAFC verringert sich der Wirkungsgrad um 15-20 % durch die erforderliche Bereitstellung des Wasserstoffs.

Brennstoffzellen, die mit extern oder intern reformiertem Erdgas oder Kohlegas betrieben werden können, kommen grundsätzlich auch für die Nutzung von extern oder intern reformierten und konvertierten Gasen aus der Biomassevergasung in Frage. Das Rohgas aus der Biomassevergasung muß dabei vor seiner Nutzung als Brenngas in Brennstoffzellen gereinigt werden, um in der Brennstoffzelle Reaktionshemmungen durch Schwefel- und Chlorverbindungen
sowie bei einigen Zellentypen auch durch Kohlenmonoxid zu verhindern. Die Anforderungen an die Gasreinheit sind bei den Hochtemperatur-Brennstoffzellen (MCFC, SOFC) geringer als bei den Niedertemperatur-Brennstoffzellen (AFC, PEMFC), da bei den Hochtemperatur-Brennstoffzellen (600-1.000°C) die Gasreformierung innerhalb der Zelle erfolgen kann. Die AFC, PEMFC und die PAFC reagieren sehr empfindlich gegenüber Kohlenmonoxid, da diese Elektrodenbeschichtungen aus Edelmetallen wie Platin oder Gold haben (Tab. 6). Kohlendioxid und Methan verhalten sich bei diesen Brennstoffzellen inert, setzen aber den Wirkungsgrad herunter. Schwefel- und Halogenverbindungen gelten bei allen Brennstoffzellentypen als hochwirksame Gifte.

Tab. 5: Chemisch-technische Merkmale von verschiedenen Brennstoffzellen

<table>
<thead>
<tr>
<th></th>
<th>AFC</th>
<th>PEMFC</th>
<th>PAFC</th>
<th>MCFC</th>
<th>SOFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geeignete Brenngase</td>
<td>H₂</td>
<td>H₂, extern reformiertes Erd- oder Kohlegas</td>
<td>H₂, Erd- oder Kohlegas (interne Reformierung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidant</td>
<td>O₂</td>
<td>O₂/Luft</td>
<td>O₂/Luft</td>
<td>O₂/Luft</td>
<td>O₂/Luft</td>
</tr>
<tr>
<td>Temperatur</td>
<td>60-90°C</td>
<td>50-90°C</td>
<td>160-220°C</td>
<td>620-660°C</td>
<td>800-1.000°C</td>
</tr>
<tr>
<td>Kathoden</td>
<td>Raney-Silber</td>
<td>Platin</td>
<td>Platin</td>
<td>NiO (+Li)</td>
<td>LaMnO₃ (+Sr)</td>
</tr>
<tr>
<td>Kathodenreaktion</td>
<td>½O₂+H₂O+2e⁻ → 2(OH)⁻</td>
<td>½O₂+2H⁺+2e⁻ → H₂O</td>
<td>½O₂+2H⁺+2e⁻ → H₂O</td>
<td>½O₂+CO₂+2e⁻ → CO₃²⁻</td>
<td>½O₂+2e⁻ → O²⁻</td>
</tr>
<tr>
<td>Anoden</td>
<td>Raney-Nickel</td>
<td>Platin</td>
<td>Platin</td>
<td>NiO (+Cr)</td>
<td>LaZrO₃- Cermet</td>
</tr>
<tr>
<td>Anodenreaktion</td>
<td>H₂+2(OH)⁻ → 2H₂O+2e⁻</td>
<td>H₂</td>
<td>H₂</td>
<td>H₂+CO₃²⁻ → H₂O+CO₂+2e⁻</td>
<td>H₂+O²⁻ → H₂O+2e⁻ u. CO+O²⁻ → CO₂+2e⁻</td>
</tr>
<tr>
<td>Elektrolyt</td>
<td>35-50 % KOH (2OH⁻)</td>
<td>Polymermembran (2H⁺)</td>
<td>H₂PO₄ (2H⁺)</td>
<td>Li₂CO₃ / Na₂CO₃</td>
<td>Yttriumstab. Zirkonoxyd (ZrO₂)/(Y₂O₃)</td>
</tr>
</tbody>
</table>

Quelle: Huppmann 1992

Vor Eintritt des Rohgases aus der Biomassevergasung in eine Brennstoffzelle müßte dieses mit einem Zyklon und Keramikfilter weitgehend entstaubt werden. Danach muß das entstaubte Rohgas von emissions- und Brennstoffzelleneruvaten Schadstoffen gereinigt werden. Die Gasreinigung sollte eine Halo-

Tab. 6: Anforderungen der Brennstoffzellentypen an die Brenngaszusammensetzung

<table>
<thead>
<tr>
<th>Brennstoffzelle</th>
<th>Gifte</th>
<th>Inerte</th>
<th>Intern reformierbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>CO₂, H₂S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PAFC</td>
<td>CO < 10 ppm</td>
<td>N₂, CO₂, CH₄</td>
<td>-</td>
</tr>
<tr>
<td>PEMFC</td>
<td>CO < 1 Vol.-%</td>
<td>N₂, CO₂, CH₄</td>
<td>-</td>
</tr>
<tr>
<td>MCFC</td>
<td>S < 1 ppm, Cl < 1 ppm</td>
<td>N₂, CO₂</td>
<td>CH₄, höhere KW</td>
</tr>
<tr>
<td>SOFC</td>
<td>S < 1 ppm, Cl < 1 ppm</td>
<td>N₂, CO₂</td>
<td>CH₄, höhere KW</td>
</tr>
</tbody>
</table>

Die Phosphorsaure Brennstoffzelle (PAFC), von der nach einer Entwicklungszeit von mehr als 20 Jahren nun die dritte Generation besteht, ist heute die einzige kommerziell verfügbare Brennstoffzelle, die die erforderliche technische Reife für eine Stromerzeugung im Bereich von 200 kWₑₑₑ und mehr besitzt. In Europa wurden FuE-Anstrengungen auf dem Gebiet der PAFC-Entwicklung lange Zeit in nur relativ bescheidenem Maße betrieben. In den letzten Jahren ist
3. Gasnutzung

Aus heutiger Sicht scheint die PEMFC trotz derzeit noch relativ hohen Herstellungskosten diejenige Brennstoffzelle zu sein, die zukünftig am ehesten auch im mobilen Bereich verwendet werden könnte. Dies ist der Grund dafür, daß die PEMFC-Forschung gegenwärtig deutlich schnellere Fortschritte macht als die Entwicklung bei den anderen Brennstoffzellentypen.
Die wesentliche Vorteile der PEMFC sind, daß sie

- keine korrosive Flüssigkeit besitzt und nur mäßige Materialkorrosionsprobleme hat,
- im Prinzip einfach zu produzieren ist,
- großen Druckdifferenzen widerstehen kann und daß sie
- eine lange Lebenszeit erhoffen läßt.

Zu ihren größten Problemen gehören die CO-Intoleranz, die Schwierigkeiten einer guten Sauerstoffversorgung für die Kathodenreaktion und die Beeinträchtigung des Wirkungsgrades durch die technischen Aufwendungen und die Schwierigkeiten beim Austrag des gebildeten Wassers. Die Wasserführung in der Zelle nimmt eine zentrale Stellung beim Zellenbetrieb ein. In der PEMFC darf das gebildete Wasser nicht schneller von der Membran weggeführt werden wie es erzeugt wird, da die Membran ansonsten dehydriert.

Demgegenüber können PEMFC für stationäre Anwendungen nicht nur zur Stromerzeugung, sondern vor allem auch in Kraft-Wärme-Kopplung zur Erzeugung von Strom und Wärme eingesetzt werden. Hier sind ein hoher Gesamtwirkungsgrad und bei einer ebenfalls 10jährigen Betriebsdauer eine Betriebsstundenzahl von mindestens 40.000 Betriebsstunden gefordert. Das bedeutet nahezu den Faktor 10 im Vergleich zu mobilen Anwendungen und stellt damit erhebliche Anforderungen an die Alterungsbeständigkeit der PEMFC.

Weltweit ist eine Vielzahl an Unternehmen in der MCFC-Forschung tätig. Unter der Führung der MTU Friedrichshafen GmbH arbeitet ein europäisches Konsortium an der Kommerzialisierung der MCFC. Die ARGE MCFC-Entwicklung besteht seit 1990 und umfaßt neben der MTU die Ruhragas AG und die RWE AG sowie in Dänemark die Firma Haldor Topsoe A/S und den Energieversorger Elkraft A.m.b.A. Die Arbeiten dieses Konsortiums, die auf etwa 10 Jahre angelegt sind, fußen auf einer Lizenzvereinbarung mit der Firma Energy Research Corporation (ERC) in Danbury, Connecticut, USA. Die ERC zählt zu den weltweit führenden Unternehmen auf dem Gebiet der MCFC. Daneben beschäftigen sich noch die M-C Power (USA), Hitachi (Japan) und die ECN (NL) mit der MCFC-Entwicklung.

Die Oxidkeramische Brennstoffzelle (SOFC) hat einen gasdichten, Sauerstoffionen leitenden Feststoffelektrolyten in Gestalt einer oxidkeramischen Folie, auf welche poröse Gasdiffusionselektroden aufgebracht sind. Die SOFC wird weltweit in drei unterschiedlichen Grundvarianten entwickelt. Dazu gehören das Röhrensystem (entwickelt von der Firma Westinghouse, USA und der Mitsubishi Heavy Industries, Japan), das vollkeramische "monolitische" Konzept und das Flachzellenkonzept. Das Flachzellenkonzept wird heute allgemein als der zukunftsträchtigste SOFC-Zellentyp angesehen und von vielen Entwicklungsteams in den USA, Japan und Europa verfolgt, weil es für eine Mas senproduktion geeignet ist und somit das größte Potential zur Kostenreduktion besitzt (Drenckhahn 1996).
3. Gasnutzung

Um eine möglichst hohe Elektrolyteitfähigkeit zu erreichen, arbeitet die SOFC bei sehr hohen Temperaturen zwischen 800°C und 1.000°C. Aufgrund der exothermen Zellreaktion wird zusätzlich zur elektrischen Energie ein großer Abwärmestrom frei, der, da er auf einem hohem Temperaturniveau vorliegt, sich in einem nachgeschalteten Abwärmenprozess zur Stromerzeugung nutzen läßt. Wegen der internen Reformierung können bei der SOFC auch kohlenwasserstoffhaltige Gasgemische als Brenngase eingesetzt werden. Da die Brennstoffnutzung in der Brennstoffzelle selbst aus technischen und wirtschaftlichen Gründen auf ca. 80% begrenzt wird, muß in der nachgeschalteten Abwärmenutzung die restliche, chemisch gebundene Energie im Anodenabgas genutzt werden (Moll et al. 1996). Dies kann z.B. durch die Oxidation in einem katalytischen Brenner einer Gasturbine und eine nachfolgende Abwärmenutzung erfolgen. Prinzipiell ist auch eine Abdampfung des Wasserstoffs aus dem Anodenabgas der Brennstoffzelle denkbar, der zur Brennstoffzelle zurückgeführt wird. Diese energetisch sehr effiziente Variante hat sich jedoch als unwirtschaftlich erwiesen. Im Falle der Erzeugung des Brennstoffs über eine integrierte allotherme Biomassevergasung kann das nicht in der Brennstoffzelle umgesetzte Anodengas zur WärmeverSORGUNG des Vergasers genutzt werden.

Die Nachteile bei der SOFC sind die Korrosionsprobleme und die Wärmespannungsprobleme bei den Werkstoffen und Dichtungsmerialien aufgrund der sehr hohen Betriebstemperaturen. Der Leistungs- bzw. Wirkungsgradabfall, dessen Höhe bislang noch nicht eindeutig geklärt werden konnte, stellt ein noch zu lösendes Problem dar. Es wird davon ausgegangen, die SOFC ohne
II. Vergasung und Pyrolyse von Biomasse

Leistungsverlust (allerdings mit einem Wirkungsgradabfall von 5 %) 7.000 h betreiben zu können. Neueste Erkenntnisse aus der Entwicklung sprechen für eine geringere Veränderung (Jaenschky/Weinzierl 1997). Bei der Firma Siemens entsprechen die Degradationswerte von etwa 3 % in 1.000 h bei 950°C in SOFC noch nicht den Zielwerten von 0,1 % pro 1.000 h (Dreneckhahn 1996).

4. Gesamtsysteme

4. Gesamtsysteme

Abb. 8: Elektrische Bruttowirkungsgrade verschiedener Stromerzeugungsanlagen beim Einsatz von Erdgas als Brennstoff

Quelle: Drenckhahn et al. 1990

Folgende Nutzungskonzepte mit integrierter Biomassevergasung sind in der Diskussion, Projektion oder Demonstration und werden nachfolgend z.T. ausführlicher vorgestellt:

- die Gasnutzung in BHWK mit Gasmotoren oder kleinen Gasturbinen,
- die Wirbelschichtvergasung unter erhöhtem Druck mit anschließender Gasnutzung in einer GuD-Anlage (30-50 MWₑₐ),
- die Wirbelschichtvergasung unter atmosphärischem Druck mit anschließender Gasnutzung in einer GuD-Anlage (30-50 MWₑₐ),
- die Wirbelschichtvergasung mit anschließender Gasnutzung in einer Gasturbine mit Dampfinjektion (Cheng-Prozeß) oder in einer indirekt befeuerten Gasturbine (Heißluftturbine),
- die CO-Vergasung von Biomasse mit Kohle in bestehenden Großfeuerungsanlagen (GuD) im Bereich von mehreren 100 MWₑₐ und
- die Nutzung als Brenngas in Brennstoffzellen.

4.1 BHKW mit Gasmotoren

Für eine dezentrale Wärme- und Stromerzeugung aus Biomasse in einem Leistungsbereich von 0,1-5 MWₑₑ scheint die Nutzung des Gases in motorbetriebe-
nen BHKW das Konzept zu sein, daß aus technischer Sicht einer Realisierung am nächsten steht, sofern man von Dampfmotoren und Dampfturbinen absieht. Der elektrische Wirkungsgrad bei Holzgas-BHKW ist im Praxisbetrieb höher als bei konventioneller Holzfeuerung mit Dampf motor oder Dampfturbine.

4.2 GuD-Anlagen mit integrierter Biomassevergasung

Viele der aktuellen Konzepte zur Wärme- und Stromerzeugung aus Biomasse im MWel-Bereich basieren auf der Vergasung der Biomasse in Wirbelschichtreaktoren, die unter atmosphärischem oder erhöhtem Druck betrieben werden, und der Stromgewinnung über Gas- und Dampfturbinen-Kreisläufe (GuD). Bei GuD-Prozessen wird die Abwärme der Gasturbine über Wärmetauscher in den Dampfkreislauf eingespeist und der Dampf zum Antrieb einer Dampfturbine genutzt.

Der Energieaufwand zur Verdichtung des gereinigten Rohgases kann dann umgangen werden, wenn bereits die Vergasung und Gasreinigung unter erhöhtem Druck erfolgen. Dies ist möglich, wenn das eingesetzte Vergasungsmittel vor seiner Einführung in den Vergasungsreaktor verdichtet wurde. Der energetische Aufwand zur Verdichtung des Vergasungsmittels wirkt sich weniger nachteilig auf die Netto-Stromerzeugung aus als die Verdichtung des zunächst drucklos erzeugten Gases aus der Biomassevergasung vor dessen Eintritt in die Gasturbine.

Die Wirbelschichtvergasung, die für eine Nutzung von Biomasse in erster Linie in Frage kommt, unter einem Druck von um 20 bar ist jedoch insbesondere wegen der Dichtungs- und Schleusenprobleme bei der Einbringung der Biomasse in den Vergasungsreaktor technisch nicht einfach. Der hierfür erforderliche technisch-ökonomische Aufwand dürfte sich erst oberhalb von ungefähr

4.3 CO-Vergasung von Biomasse und Kohle

- Sie bietet eine größere Flexibilität gegenüber saisonalen Schwankungen bei der Verfügbarkeit der Biobrennstoffe.
- Sie ermöglicht eine energetische Umsetzung mit hohen Wirkungsgraden wie sie nur in Großanlagen möglich sind.
- Sie verringert möglicherweise den Gehalt an Teeren und anderen unerwünschten Verbindungen bei einem gleichzeitig höheren Gasertrag aufgrund einer erhöhten Reaktivität bei gemeinsamer Vergasung.

Die energetische Nutzung von Biomasse in bestehenden Kohlekraftwerken hätte auch den Vorteil, daß der Investitionsaufwand relativ niedrig gehalten werden
kann. Die Integration der Biomassevergasung kann auf verschiedenen Wegen erfolgen:
- Die Biomasse kann gemeinsam mit der Kohle in einem Reaktor vergast werden.
- Die Biomasse kann in einem speziellen Vergaser bei geringem Druck und niedriger Temperatur vergast und das gereinigte Gas mit dem Kohlegas zusammen genutzt werden.
- Die Biomasse kann pyrolisiert und der vermahlene Pyrolysekoks sowie das Pyrolysegas können mit dem Kohlegas genutzt werden.

Die Perspektiven zur CO-Vergasung von Biomasse und Kohle in bestehenden Großanlagen sind abhängig von den Erfahrungen aus den geplanten Demonstrationsprojekten. Von Bedeutung sind insbesondere die Ergebnisse im Hinblick auf
- die Brennstoffflexibilität in Abhängigkeit von der Qualität und Quantität der eingesetzten Biomasse,
- die Umweltverträglichkeit der CO-Vergasung, insbesondere bezüglich der NOₓ-Emissionen und der Verwertbarkeit der Rückstände,
- die Korrosionsbeständigkeit in Abhängigkeit von der Vergasungstechnik und dem Reaktormaterial und
- das Teillastverhalten im gemeinsamen Betrieb mit der Kohleeinheit.
4.4 Biomassevergasung und Brennstoffzellen

Die Kombination von Biomassevergasern mit Brennstoffzellen stellt aufgrund ihrer Modularität, ihres hohen Wirkungsgrades und ihres guten Teillastverhaltens aus technischer Sicht ein interessantes Konzept für eine dezentrale Wärme- und Stromgewinnung aus regional anfallender Biomasse dar. Die Chancen für eine Realisierung derartiger Konzepte ist besonders groß, wenn

- die Temperaturdifferenz zwischen Vergaser und Brennstoffzelle möglichst gering ist,
- die Vergasung unter ähnlichem Druck abläuft, wie ihn die Brennstoffzelle erfordert,
- das Rohgas einen möglichst hohen Wasserstoffanteil (insbesondere bei den Niedertemperatur-Brennstoffzellen) und einen geringen Anteil an heizwertsenkenden Inertgasen enthält und
- wenn das Rohgas teer-, schwefel- und chlorarm ist.

Die erfolgreiche Demonstration eines zuverlässigen Brennstoffzellensystems mit integrierter Biomassevergasung setzt voraus, daß zuvor die technisch-ökonomischen Fragen zur erforderlichen Gasreinigung und Gaskonditionierung befriedigend beantwortet werden können.

Die Anpassung von in Energieumwandlungsanlagen für fossile Energieträgern bewährten Systemmodulen zur Gasreinigung, Gasformierung und Wasserstoffgewinnung an kleinere Anlagengrößen (scale-down) ist bisher ebenso wenig demonstriert wie die Zuverlässigkeit der Einzelkomponenten im Dauerbetrieb und deren erfolgreiche Hintereinanderschaltung unter unterschiedlichen Einsatzbedingungen (Biomassearten, Druckverhältnisse). Die Brennstoffzellen könnten bereits für einen Leistungsbereich von 20-200 kWel und damit für einen Einsatz in kleinen Anwendungsbereichen interessant werden. Unter 100 kWel dürfte der Vergasungsschritt und grundsätzlich auch die Wärme-Kraft-Kopplung bei Biomasseanlagen jedoch zu aufwendig sein.

II. Vergasung und Pyrolyse von Biomasse

Abb. 9: Eingliederung einer Hochtemperaturbrennstoffzelle (SOFC) in eine GuD-Anlage mit integrierter Biomassevergasung

Obwohl die meisten Biomassearten deutlich geringere Schwefelgehalte (0,05-0,4 %) besitzen als die meisten Kohlearten, kann auch bei einigen Biobrennstoffen eine Entschwefelung des Gases aus der Biomassevergasung zum Schutz der Brennstoffzellen erforderlich sein. Der im Gegensatz zu Kohle deutlich höhere Kaliumgehalt von Agrobrennstoffen kann einen zusätzlichen Reinigungsaufland bei der Kombination von bestimmten Vergasertypen mit bestimmten Brennstoffzellen erforderlich machen. In dieser Hinsicht bieten die MCFC Vorteile, da diese Zellen ohnehin Alkalisalze als Elektrolyten enthalten.
4. Gesamtsysteme

Auf die günstigen elektrischen Wirkungsgrade insbesondere der PEMFC und der Hochtemperatur-Brennstoffzellen wurde bereits hingewiesen. Im Falle der Hochtemperatur-Brennstoffzellen ist durch die Restgasverbrennung und durch die bei hohen Temperaturen anfallende Abwärme eine weitere Erhöhung des elektrischen Wirkungsgrades durch eine nachgeschaltete Dampfturbine oder GuD-Anlage möglich (Abb. 9).
III. Stand der Biomassevergasung

1. Stand der Technik bei Kleinvergasern

Bei den Biomassevergasern für Kleinanlagen gehören die klassisch gebauten Gegenstromvergaser wegen ihrer Zuverlässigkeit und Brennstoffflexibilität zu
III. Stand der Biomassevergasung

den Festbettvergasertypen, die sich technisch bewährt haben. Die technische Zuverlässigkeit ihrer Automatisierung und ein kontinuierlicher Betrieb ohne Beaufsichtigung sind im Grunde bei einigen Herstellern erreicht. Leider liefern sie ein ungewöhnlich teerreiches Rohgas, dessen kosten- und umweltverträgliche Reinigung bisher noch nicht gelungen ist. Im Falle der direkten Verbrennung des Rohgases zur Erzeugung von Dampf oder Heizwärme ist der Teergehalt weniger kritisch, da die meisten Teerbestandteile bei der Verbrennung in unkritische Gase umgewandelt werden.

In Europa gibt es verschiedene Unternehmen, die sich mit der Entwicklung und Herstellung von Biomassevergasern mit Leistungen bis etwa 1,5 MWel befassen. Die Entwicklung von Vergasungsanlagen mit Leistungen im Bereich um oder unter 100 kWel wird durch meist kleinere Unternehmen und Universitäten getragen, deren finanzielle Möglichkeiten stark eingeschränkt sind. In der Vergangenheit ist es deshalb öfter vorgekommen, daß Firmen ihre Aktivitäten aufgeben mußten, oder daß sie von anderen übernommen wurden. Die klein- bis
mittelständischen Entwickler und Hersteller sind zu einem großen Teil in Deutschland und in der Schweiz angesiedelt.

Problematik der Gasqualität hinsichtlich einer motorischen Gasnutzung durchgeführt. Für ein komplettes Holzvergaser-BHKW inklusive Gasaufbereitung müßte nach Herstellerangaben mit Kosten von 8.000 DM/kW_e bis ca. 200 kW_e gerechnet werden.

Tab. 7: Leistungsbereich und Entwicklungsstand von Festbettvergasern

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Leistungsbereich</th>
<th>Entwicklungsstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcus (D)</td>
<td>80-320 kW_e/50-960 kW_th</td>
<td>Forschung an Heißgasmotor</td>
</tr>
<tr>
<td>ATES (D)</td>
<td>25 kW_e/50 kW_th</td>
<td>Demo-Anlage mit MAN-Motor</td>
</tr>
<tr>
<td>DANECO (I)</td>
<td>0,6 MW_e u. 6 MW_th</td>
<td>Versuchsanlagen in Villasanta und Isola d’Elba</td>
</tr>
<tr>
<td>DASAG (CH)</td>
<td>100 kW_e/450 kW_th</td>
<td>Betriebserfahrungen in Indien</td>
</tr>
<tr>
<td>DML (D)</td>
<td>100 kW_e/187 kW_th</td>
<td>Versuche mit Imbert-Vergaser und DML-Motor</td>
</tr>
<tr>
<td>Chevet (F)</td>
<td>20-120 kW_e</td>
<td>Erfahrungen in Entwicklungsländer</td>
</tr>
<tr>
<td>Easymod (D)</td>
<td>1,5 MW_e</td>
<td>Versuchsanlagen</td>
</tr>
<tr>
<td>HTV-Juch (CH)</td>
<td>450-1.000 kW_th</td>
<td>Pilotanlage</td>
</tr>
<tr>
<td>Jäckel (D)</td>
<td>10-590 kW_e</td>
<td>mobile 50 kW_e-Versuchsanlage</td>
</tr>
<tr>
<td>Kuntschar& Schlüter (D)</td>
<td>50-60 kW_e/120-200 kW_th</td>
<td>Tests mit Klärschlamm-Vergaser und Zündstrahl-Diesel</td>
</tr>
<tr>
<td>Martezo (F)</td>
<td>135-200 kW_e</td>
<td>Versuchsanlage in Højgild (DK) und Anlagen an der Elfenbeinküste</td>
</tr>
<tr>
<td>NIHPBS (IRL)</td>
<td>100 kW_e/200 kW_th</td>
<td>Versuchsanlage in Enniskillen (IRL)</td>
</tr>
<tr>
<td>Richter (D)</td>
<td>30 kW_e</td>
<td>Versuchsanlage</td>
</tr>
<tr>
<td>TU Dänemark</td>
<td>120 kW_e</td>
<td>Versuchsanlage</td>
</tr>
<tr>
<td>Wamsler/H. Pedersen (D)</td>
<td>200 kW_e/600-1500 kW_th</td>
<td>Versuchsanlagen mit Motor</td>
</tr>
<tr>
<td>Vølund (DK)</td>
<td>1,2 MW_e/4 MW_th</td>
<td>BHKW geplant in Harboøre und Kyndby (nicht vor 1997)</td>
</tr>
</tbody>
</table>

Die Firma HTV (CH) besitzt eine HTV-Juch-Vergaser-Versuchsanlage in Kestenhölz (450 kW bzw. 700 kW). Diese wurde nach mehreren Umbauten aufgrund hoher Gehalte an Teeren und Staub im Rohgas mit einem marktgängi-
gen BHKW anscheinend erfolgreich getestet. Die Kosten einer HTV-Juch-
Vergasungsanlage mit einer Leistung von 1,5-2 MWel sollen ca. 4.000 DM pro
kW installierter elektrischer Leistung und ca. 10.000 DM/kWel für eine
125 kWel-Anlage betragen (Steinbrecher 1996).

Vom Open-top-Vergaser sind in Indien über 350 Anlagen mit 20-100 kWel
und 50-400 kWth in Betrieb. Sie liefern Strom für Wasserpumpen und Bewässer-
ungssysteme, Kornmühlen und zur Beleuchtung (Sharan et al. 1997). Die
DASAG (CH) wird den Open-top-Vergaser in einer 100 kWel/450 kWth in
Chatel-St-Denis (CH) testen. Außerdem soll der in Indien nur von Hand betrie-
bene Vergaser auf einen vollautomatischen Betrieb umgestellt werden. Es bleibt
abzuwarten, ob die strengeren europäischen Genehmigungsbedingungen und
Emissionsgrenzwerte eingehalten werden können. Wenn die Anlage ihre in In-
dien gemessenen geringen Teergehalte bestätigt, würde sie eine Alternative zu
den europäischen Vergaserentwicklungen darstellen.

Die von Martezo (F) für den Einsatz in Entwicklungsländern hergestellten
Biomassevergaser sollen in Dänemark ebenfalls hinsichtlich eines Einsatzes
unter europäischen Rahmenbedingungen erprobt werden. Dieser Vergasertyp
wurde in den 80er Jahren, finanziert durch nationale, europäische oder interna-
tionale Entwicklungsorganisationen, in einigen Entwicklungsländern installiert
und teilweise mit Erfolg betrieben. Es handelt sich dabei um einen Biomasse-
Gleichstromvergaser mit aufgebauter Generatoreinheit. Es gilt als zweifelhaft,
ob der Vergaser ein hinreichend teerfreies Gas erzeugt, um eine dauerhafte, un-
bemannte Gasnutzung in Motoren zu gewährleisten.

Die meisten der aufgeführten Firmen haben ihre Vergaser auf einen Betrieb
mit naturbelassenen Holzbrennstoffen mit genau spezifizierten Proportionen
und Eigenschaften ausgelegt. Die Entwicklung von zweistufigen Vergasern (TU
Dänemark, UET), die auch für Stroh oder andere feste Agrobrennstoffe mit
niedrigem Ascheverweichungstemperaturen in Frage kommen können, steckt
noch in den Anfängen. Bislang gibt es keinen Hersteller, der eine unter Praxis-
bedingungen erprobte Strohvergasungsanlage anbieten kann. Der zweistufige
Vergaser wird derzeit in einer 4 MWth-Anlage in Harboøre, Dänemark getestet.
Die Vergasung in zwei Stufen könnte möglicherweise den erhofften Durch-
bruch auf dem Gebiet der Vergasung von Biomassen mit niedrigem Asche-
Schmelzpunkt bringen.
III. Stand der Biomassevergasung

2. Stand der Technik bei Wirbelschichtvergasern

Zirkulierende Wirbelschichtvergaser für Anlagen mit einer Wärmeleistung von bis zu 100 MWth, die auf organische Rest- und Abfallstoffe ausgelegt sind, werden von verschiedenen Herstellern angeboten bzw. sind bereits in Betrieb oder in der Planung (Tab. 8). In Deutschland besitzt die Firma Lurgi Energie- und Umwelttechnik GmbH die meisten Erfahrungen mit der Biomassevergasung in zirkulierenden Wirbelschichtanlagen. Ihr 1986 in Österreich installierter Rindenvergaser ist inzwischen stillgelegt. Der hohe Aschegehalt im Gas verursachte chemisch-technische Schwierigkeiten, die zur Schließung der Anlage führten (Lauer/Spitzer 1996). Trotz der Schwierigkeiten plant die Lurgi bei der Rüdersdorfer Zement GmbH, die mit 100 MWth vermutlich größte Biomassevergasungsanlage zur Prozeßwärmeerzeugung in Europa zu bauen.

Tab. 8: Anlagen mit Wirbelschichtvergasung zur Wärmeerzeugung

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Vergasertyp</th>
<th>Brennstoffe</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foster Wheeler (Pyroflow), FIN</td>
<td>zWS</td>
<td>Abfälle aus der Holz-, Zellstoff- u. Papierindustrie</td>
<td>4 Anlagen mit 15-35 MW<sub>th</sub> (FIN, S, P)</td>
</tr>
<tr>
<td>Tampella (Enviropower), FIN</td>
<td>Druck-WS</td>
<td>Holz, Sägerückstände</td>
<td>15 MW<sub>th</sub> Pilotanlage, FIN</td>
</tr>
<tr>
<td>Gotaverken (Kvaerner), S</td>
<td>zWS</td>
<td>Holz, Sägerückstände</td>
<td>35 MW<sub>th</sub> Anlage in Varö (S)</td>
</tr>
<tr>
<td>Battelle (Ferco), USA</td>
<td>Allotherme zWS</td>
<td>Holz, Rutenhirse, Stroh</td>
<td>15 MW<sub>th</sub>-Anlage geplant bei der McNeil Power Station in Burlington, Vermont, USA</td>
</tr>
<tr>
<td>IGT Renugas, USA</td>
<td>Druck-WS mit Luft oder O<sub>2</sub></td>
<td>Bagasse von Zuckerrohr</td>
<td>Pilotanlage mit 10 t/d soll im Bereich 50-100 t/d in Maui, Hawaii getestet werden</td>
</tr>
<tr>
<td>TPS Termiska Prozessor AB, S</td>
<td>zWS mit Luft</td>
<td>Holz, Klärschlamm,</td>
<td>2×2 MW<sub>th</sub> Pilotanlage, SW u.</td>
</tr>
<tr>
<td>Hochtemperaturvergaser von Winkler (HTW)</td>
<td>Druck-WS mit Luft oder O<sub>2</sub></td>
<td>Sägemehl, Rinde, Holz, Klärschlamm</td>
<td>2×15 MW<sub>th</sub> Pilotanlage, I</td>
</tr>
<tr>
<td>MTCI (Thermo-Chem), USA</td>
<td>Allotherme WS</td>
<td>Holz, Papier- schlamm,</td>
<td>3 kommerzielle 30-90 MW<sub>th</sub> Anlagen in Europa</td>
</tr>
<tr>
<td>Lurgi AG, D</td>
<td>zWS mit Luft oder O<sub>2</sub></td>
<td>Holz, Altholz, Rinde,</td>
<td>4 kleine Pilotanlagen in den USA</td>
</tr>
<tr>
<td>Bioflow (Ahlstrom/ Sydkraft), FIN</td>
<td>zWS mit Luft</td>
<td>Holz, Sägemehl, Rinde</td>
<td>25 MW<sub>th</sub> Altanlage in Pöls, A (stillgel.), 100 MW<sub>th</sub> Anlage in Rüdersdorf, D (gepl.)</td>
</tr>
<tr>
<td>Noell, D</td>
<td>Flugstromvergaser mit O<sub>2</sub></td>
<td>Sägemehl, Stroh</td>
<td>4×5-18 MW<sub>th</sub> Anlage in FIN und D</td>
</tr>
</tbody>
</table>

Quelle: Donovan/Fehrs 1995, Beenackers/Maniatis 1996

Tab. 9: Biomassevergasung in WSF mit Stromerzeugung

<table>
<thead>
<tr>
<th>Betreiber/Hersteller</th>
<th>Leistung</th>
<th>Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARBRE (TPS), GB/S</td>
<td>8 MW<sub>e</sub></td>
<td>Geplant für 1999 (Thermie)</td>
</tr>
<tr>
<td>Bioflow (Foster Wheeler), S/FIN</td>
<td>6 MW<sub>e</sub></td>
<td>In Värnamo, S</td>
</tr>
<tr>
<td>ELSAM (Tampella) DK/FIN</td>
<td>7.2 MW<sub>e</sub></td>
<td>Geplant in 1998 (Thermie)</td>
</tr>
<tr>
<td>ENEL (Lurgi), I/D</td>
<td>12 MW<sub>e</sub></td>
<td>Geplant in 1998 (Thermie)</td>
</tr>
<tr>
<td>Enviropower (Tampella), S/FIN</td>
<td>60 MW<sub>e</sub></td>
<td>Geplant in Schweden</td>
</tr>
<tr>
<td>Prov. Noord-Holland (TPS), NL/S</td>
<td>30 MW<sub>e</sub></td>
<td>Geplant in 1996</td>
</tr>
</tbody>
</table>

Quelle: Dinkelbach/Kalkschmitt 1996

Eine weitere Biomasse-Wirbelschichtvergasung mit erhöhtem Druck soll im Rahmen des EU-Projektes "BIOCYCLE" in Finnland realisiert werden. Die Holzhackschnitteleisen sollen auf 15 % Restfeuchte vorgetrocknet und im IG-T-Wirbelschichtreaktor (Institut für Gastechnologie, USA) bei 22 bar und 850-950°C mit Luft vom Kompressor an der Gasturbine und anderen Kompressoren vergast werden. Das Rohgas (5-7 MJ/m³) muß danach auf 350-550°C abgekühlt

Eine **Wirbelschichtvergasung mit Biomasse unter atmosphärischem Druck mit GuD** soll im Rahmen des EU-Projektes "ENERGY FARM" bei Pisa (Italien) demonstriert werden. Der Wirbelschichtvergaser (1,4 bar, 800°C) von der Firma Lurgi soll auf der Basis von Holz (rd. 8-10 % Restfeuchte) rd. 12 MWₐl erzeugen. Das Rohgas soll durch einen Luftvorwärmer und einen Dampferzeuger auf 600°C und 250°C abgekühlt, mit Zyklon und Gewebefilter von Staubpartikeln befreit, in einem mehrstufigen Naßwäscher gereinigt und auf 45°C abgekühlt werden. Bevor das Gas in zwei Gasturbinen (European Gas Turbine Ltd.) mit je 4,5 MWₐl eintritt, muß es auf ca. 20 bar komprimiert werden. Mit den heißen Abgasen der Gasturbine und einer zusätzlichen Feuerung soll ein Dampferzeuger betrieben werden, der Dampf für eine Dampfturbine mit 5 MWₐl liefert. Der elektrische Wirkungsgrad wird auf 33 % geschätzt.

Die Biomassevergasung mit erhöhtem Druck und anschließender **Gasnutzung in Heißluftturbinen** soll in den EU-Projekten BINAGAS an der Freien Universität vor Brüssel (VUB) und TINA in Graz erprobt werden. Beim BINAGAS-Projekt wird die Biomasse in einem atmosphärischen Wirbelschichtvergaser bei 720-850°C vergast. Das Rohgas wird mit einem Zyklon entsstaubt und der Verbrennungskammer eines Wärmetauschers zugeführt. Der Kompressor der Gasturbine stellt die Luft zur Verfügung, die durch den Wärmetauscher auf maximal 850°C erwärmt werden kann. Um den Wirkungsgrad zu erhöhen und eine gewisse Flexibilität bei der Strom- zu Wärmeausbeute zu er-
III. Stand der Biomassevergasung

die Wärmerückgewinnung erfolgt über ein kompliziertes System mit Wärmetausichern und Turboladern. Der elektrische Wirkungsgrad (netto) soll 22,6%, der Gesamtwirkungsgrad 66,8% erreichen.

Das einzige geplante Demonstrationsprojekt mit allothermer Wirbelschichtvergasung ist das Vermont Biomass Gasification Project in Burlington (Vermont, USA) bei der McNeil Power Generation Anlage, die bereits über eine holzbefeuerte 50 MW_{el} Anlage verfügt. Es handelt sich hierbei um einen allothermen Biomassevergaser mit 40 MW_{th} von der Firma Batelle, USA, dessen mittelkaloriges Gas in einer hocheffizienten Gasturbine zur Stromgewinnung genutzt werden soll.

3. Stand der Gasnutzung in Brennstoffzellen

Bisher gibt es noch keine Biomasse-Vergasungsanlage, deren Gas als Brenngas in Brennstoffzellen zur stationären Stromerzeugung verwendet wird. Tabelle 10 zeigt, daß PAFC-BHKW, die reformiertes Erdgas (nach CO-Konversion) als
Brennstoff verwenden, bereits die technische Reife für kommerzielle Anwendungen erreicht haben, und daß die PEMFC die Kommerzialisierungsphase möglicherweise in einigen wenigen Jahren erreichen wird.

Tab. 10: Wichtige Kenngrößen von verschiedenen Brennstoffzellentypen

<table>
<thead>
<tr>
<th></th>
<th>PAFC</th>
<th>PEMFC</th>
<th>MCFC</th>
<th>SOFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>200°C</td>
<td>80-90°C</td>
<td>650°C</td>
<td>800-1.000°C</td>
</tr>
<tr>
<td>Elektrolyt</td>
<td>Phosphorsäure</td>
<td>Polymermembran</td>
<td>Karbonat-</td>
<td>Oxidkeramik</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>schmelze</td>
<td></td>
</tr>
<tr>
<td>Brennstoff</td>
<td>H₂ (mit Reformer</td>
<td>H₂ (mit Reformer</td>
<td>H₂, CO, Erdgas,</td>
<td>H₂, CO, Erdgas,</td>
</tr>
<tr>
<td></td>
<td>Erdgas und</td>
<td>Erdgas und</td>
<td>Kohlenwasser-</td>
<td>Kohlewasser-</td>
</tr>
<tr>
<td></td>
<td>Methanol)</td>
<td>Methanol)</td>
<td>stoffgase</td>
<td>stoffgase</td>
</tr>
<tr>
<td>Stand der</td>
<td>250 Demo-Anlagen</td>
<td>Prototypen, 250-</td>
<td>Protoypten und</td>
<td>Laboranlagen u.</td>
</tr>
<tr>
<td>Technik</td>
<td>in Betrieb, teilauto-</td>
<td>kW-Demo-</td>
<td>2 MW-Demo-</td>
<td>100-200 kW-Demo-</td>
</tr>
<tr>
<td></td>
<td>matisierte</td>
<td>Anlage in Betrieb</td>
<td>Anlage in Betrieb</td>
<td>Anlagen in Bau</td>
</tr>
<tr>
<td></td>
<td>refertigung (200 kW)</td>
<td>2 MW-Demo-</td>
<td></td>
<td>bzw. geplant</td>
</tr>
<tr>
<td>Realisierte</td>
<td>200 kWₐl-11 MWₐl</td>
<td>20-50 kWₐl</td>
<td>20 kWₐl-2 MWₐl</td>
<td>25 kWₐl</td>
</tr>
<tr>
<td>Einheiten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einsatzgebiet</td>
<td>BHKW, HKW</td>
<td>Verkehr, BHKW</td>
<td>BHKW, HKW, Kraftwerke</td>
<td>BHKW, HKW, Kraftwerke</td>
</tr>
<tr>
<td>elektrischer</td>
<td>38-40 %</td>
<td>40 %</td>
<td>50 %, > 50 % bei</td>
<td>50 %, > 60 % bei</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td></td>
<td></td>
<td>nachgeschalteter</td>
<td>nachgeschalteter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dampfturbine</td>
<td>Gasturbine</td>
</tr>
</tbody>
</table>

* für reformiertes Erdgas, bezogen auf Hₙ

Quelle: Jaerschky/Weinzierl 1997

Im Vergleich zu den weniger gut entwickelten Hochtemperatur-Brennstoffzellen stellen die PAFC und die PEMFC deutlich höhere Anforderungen an die Gasreinheit und erzielen geringere Wirkungsgrade. Langfristig erscheinen deshalb die Hochtemperatur-Brennstoffzellen, eine erfolgreiche Weiterentwicklung vorausgesetzt, besser geeignet zur Strom- und Wärmegewinnung aus Gasen von Biomassevergasern in stationären Anlagen.

Angesichts der großen Fortschritte bei der Brennstoffzellenentwicklung sind in jüngster Zeit Konzepte zum Einsatz von Brennstoffzellen zur effizienten Stromgewinnung mit konvertiertem Gas aus der Biomassevergasung entwickelt.

4. Wirtschaftlichkeitsaspekte

Die Wirtschaftlichkeit von Systemen zur besseren energetischen Nutzung von Biomasse über den Weg der Vergasung und Gasnutzung in Gasmotoren, Gasturbinen oder Brennstoffzellen hängt von den folgenden Einflussgrößen ab:

- den Investitionskosten für das Gesamtsystem (Brennstoffaufbereitung, Vergaser, Gasreinigungssystem, Gasnutzung),
- der Auslastung,
4. Wirtschaftlichkeitsaspekte

- den Betriebskosten (Brennstoffkosten, Kosten für Personal, Wartung, Instandhaltung, Entsorgungskosten für Asche, Kondensat, Filter und Filterrückstände) und
- den Erlösen für Wärme und Strom.

Für kleinere Holzgas-BHKW mit 100-200 kWel liegen die spezifischen Investitionen gemäß Herstellerangaben zwischen 5.000 DM/kWel und 10.000 DM/kWel (vgl. Kap. III.1), für größere Holzgas-BHKW mit Leistungen von 1,5-3 MWel zwischen 4.000 DM/kWel (HTV-Juch-Vergaser) und 5.000 DM/kWel (Easymod-Vergaser). Die Preise für den Easymod-Vergaser sollen Herstellerangaben zufolge bei einer Kleinserienfertigung ab der fünften Anlage auf 3.300-3.500 DM/kWel gesenkt werden können (Steinbrecher 1996).

III. Stand der Biomassevergasung

Anlagen mit Heißluftturbine (BINAGAS, TINA) liegen zwischen 6.700 DM/kW_{el} und 10.300 DM/kW_{el} (Tab. 11).

Tab. 11: Leistungs- und Kostenangaben für EU-Demonstrationsprojekte mit integrierter Biomassevergasung

<table>
<thead>
<tr>
<th></th>
<th>Bioflow, S</th>
<th>Biocycle, FIN</th>
<th>Energy Farm, I</th>
<th>Arbre, UK</th>
<th>Binagas, B</th>
<th>Tina, A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistung, MW_{el}</td>
<td>6</td>
<td>7,2</td>
<td>11,9</td>
<td>8,0</td>
<td>0,2-0,7</td>
<td>2,0</td>
</tr>
<tr>
<td>Leistung, MW_{in}</td>
<td>9</td>
<td>6,78</td>
<td>0</td>
<td>0</td>
<td>0,5-1,2</td>
<td>4,7</td>
</tr>
<tr>
<td>Wirkungsgrad, elektrisch (%)</td>
<td>32</td>
<td>39,9</td>
<td>33</td>
<td>30,6</td>
<td>16-27</td>
<td>22,6</td>
</tr>
<tr>
<td>Wirkungsgrad, gesamt (%)</td>
<td>85-90</td>
<td>77,3</td>
<td>33</td>
<td>30,6</td>
<td>40-70</td>
<td>66,8</td>
</tr>
<tr>
<td>Auslastung (h/a)</td>
<td>4.900</td>
<td>7.400</td>
<td>7.000</td>
<td>6.800</td>
<td>5.000</td>
<td>7.000</td>
</tr>
<tr>
<td>Projektkosten (Mio. DM)</td>
<td>70</td>
<td>75</td>
<td>74</td>
<td>71</td>
<td>5,4</td>
<td>26</td>
</tr>
<tr>
<td>Kosten der Anlage (Mio. DM)</td>
<td>64</td>
<td>68</td>
<td>62</td>
<td>34</td>
<td>4,7</td>
<td>k.A.</td>
</tr>
<tr>
<td>Betriebskosten (Mio. DM/a)</td>
<td>k.A.</td>
<td>6,9</td>
<td>8,9</td>
<td>6,8</td>
<td>0,2-0,3</td>
<td>2,6</td>
</tr>
<tr>
<td>Investitionen (DM/kW_{el})</td>
<td>10.700</td>
<td>9.500</td>
<td>5.300</td>
<td>4.200</td>
<td>6.700</td>
<td>10.300</td>
</tr>
<tr>
<td>Brennstoffkosten (DM/t TS)</td>
<td>110</td>
<td>170</td>
<td>110</td>
<td>80-100</td>
<td>60-110</td>
<td>300</td>
</tr>
</tbody>
</table>

Quelle: Beenackers/Masiatis 1996

Die NREL kommt in ihren Untersuchungen zu dem Schluss, daß die allotherme Vergasung mit atmosphärischem bzw. relativ niedrigem Druck das zu bevorzugende Vergasungssystem für kleinere Anlagen mit anschließender Gasnutzung in Gasturbinen und auch für die meisten Brennstoffzellsysteme darstellt (Craig/Mann 1996). Die verglichen mit der Vergasung unter erhöhtem Druck höheren Kosten für die Kaltgasreinigung und die Gaskompression werden mehr als aufgewogen durch die niedrigeren Kosten für den Vergaser und die Brennstoffzuführung. Dies gilt auch für Anlagen mit relativ großer Leistung.
4. Wirtschaftlichkeitsaspekte

Agesichts des sehr unterschiedlichen technischen Entwicklungsstandes bei den Brennstoffzellen, sind belastbare Aussagen zu den Kosten eines Brennstoffzellensystems nur für PAFC, die mit reformiertem Erdgas betrieben werden, verfügbar. Die spezifischen Investitionskosten für ein schlüsselfertiges, in
Kleinserie hergestelltes BHKW mit PAFC von der amerikanischen Firma IFC/ONSI liegen gegenwärtig pro 200 kW$_{el}$-Einheit bei rd. 3.000 US$/$kW$_{el}$ bzw. 5.000-6.000 DM/kW_{el} (Kordeschi/Simader 1996). Durch Komponentenverbesserung, Systemvereinfachung und eine weitgehend automatisierte Serienfertigung werden Kostensenkungen auf 3.000-4.000 DM/kW_{el} bei einem Produktionsvolumen von 50 MW$_{el}$/a erwartet. Bei einer Fertigungskapazität von 400 MW$_{el}$/a und mehr scheint aus Sicht der Hersteller eine weitere Kostenminderung auf 2.000-2.500 DM/kW_{el} möglich (Sjunnesson 1996). Voraussetzung hierfür ist, daß sich die PAFC in den nächsten Jahren zumindest in Nischenmärkten etabliert, und daß durch eine entsprechende Nachfrage der erforderliche finanzielle Spielraum für Weiterentwicklungen geschaffen werden kann.

Tab. 12: Vergleich der Kosten der Wärmegestehung aus Biomasse und Erdgas

<table>
<thead>
<tr>
<th></th>
<th>Einheit</th>
<th>Biomassevergaser mit Motor</th>
<th>KWK mit Erdgas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamte Investitionskosten</td>
<td>Mio. DM</td>
<td>3,02</td>
<td>2,38</td>
</tr>
<tr>
<td>Spezif. Investitionskosten</td>
<td>DM/kW_{el}</td>
<td>6,700</td>
<td>3,100</td>
</tr>
<tr>
<td>Betriebskosten</td>
<td>DM/a</td>
<td>302,000</td>
<td>119,000</td>
</tr>
<tr>
<td>Brennstoffkosten</td>
<td>DM/t bzw. m³</td>
<td>120</td>
<td>0,29</td>
</tr>
<tr>
<td>Elektrischer Wirkungsgrad</td>
<td>%</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>Thermischer Wirkungsgrad</td>
<td>%</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>Strom- zu Wärmeausbeute</td>
<td></td>
<td>0,470</td>
<td>0,637</td>
</tr>
<tr>
<td>Stromgutschrift/bzw. -erlös</td>
<td>DM/MWh$_{el}$</td>
<td>150-160</td>
<td>100</td>
</tr>
<tr>
<td>Wärmegestehungskosten</td>
<td>DM/MWh$_{hh}$</td>
<td>100</td>
<td>60</td>
</tr>
</tbody>
</table>

Quelle: Hansen et al. 1996

Projekte zur Demonstration der Funktionsfähigkeit der PAFC mit amerikanischer und japanischer Technologie gefördert.

Die PEMFC-Herstellung hat derzeit noch prototypischen Charakter mit hohen spezifischen Kosten. Von der Firma Siemens für U-Boote entwickelte, sauerstoffbetriebene PEMFC (Stack) mit 100-150 kW\textsubscript{el} kosten 40.000-50.000 DM/kW\textsubscript{el} (Hammerschmidt 1996). Von der Firma Ballard PS, Kanada wurde die PEMFC 1993 für 10.000 US$/kW\textsubscript{el} (für den Stack) angeboten (Tab. 13). Inzwischen liegen die Kosten für eine PEMFC (Stack) bei etwa 9.500 DM/kW\textsubscript{el} (Wagner/König 1997). Die Preisangaben für PEMFC (Stacks) von vergleichweise günstigen Anbietern, wie z.B. der Firma H-Power, Kalifornien, oder der Firma DeNora, Italien, sind von verschiedenen Faktoren (Abnehmer, Anwendungs- zweck usw.) abhängig und als strategische Preise zu verstehen, die nicht unbedingt in enger Korrelation zu den eigentlichen Herstellungskosten stehen (Maggiore 1997).

Durch Serienproduktion könnten im Verlauf der nächsten Jahre die spezifischen Investitionskosten um den Faktor 2-3 verringert werden. Weitere Kostensenkungen könnten durch Verbesserungen in der Konzeption und im Design der Zelle sowie bei den Materialien (weniger Platin für die Elektroden und billigere Polymermembranen) der PEMFC erzielt werden. In Kalifornien und Singapur will die Firma H-Power, Kalifornien, Fertigungsstätten mit Kapazitäten von 100-150 MW\textsubscript{el} bzw. 200-300 MW\textsubscript{el} pro Jahr errichten, die bereits in wenigen Jahren PEMFC (Stack) für 1.000 US$/kW\textsubscript{el} produzieren sollen (Johnsson 1997). Dadurch könnten Preise von 2.000-3.000 DM/kW\textsubscript{el} für ein PEMFC-System mit Erdgasreformer möglich und ein Einsatz der PEMFC in der Haustechnik (5-30 kW\textsubscript{el}) interessant werden. Die Brennstoffzelle als Pkw-Antrieb dürfte dagegen erst bei Herstellungskosten unter 250-300 DM/kW\textsubscript{el} wettbewerbsfähig werden.

Die noch in der Entwicklung befindliche MCFC und SOFC sollen gegenwärtig 2-4 mal teurer sein als die PAFC (Kordesch/Simader 1996). Für eine MCFC (Stäck) sind gegenwärtig Kosten in Höhe von etwa 38.000 DM/kW\textsubscript{el} und für eine SOFC (Stack) von 57.000 DM/kW\textsubscript{el} zu veranschlagen (Wagner/König 1997). Die Kosten für MCFC-Demo-Anlagen im Zeitraum von 1998-2000 werden auf über 5.000 DM/kW\textsubscript{el} geschätzt (Ewe 1996). Unter der Annahme einer Jahresproduktion von 500 MW\textsubscript{el} wird bei der SOFC eine Kostensenkung auf 2.000-3.000 DM/kW\textsubscript{el} für Kleinkraftwerke im MW-Bereich für möglich gehalten (Drenckhahn 1996). Die Aufteilung der Kosten zeigt, daß davon etwa $\frac{1}{3}$ für das Zellenmodul, $\frac{1}{3}$ für die Maschinentechnik und $\frac{1}{3}$ für die Elektro- und Leittechnik einschließlich Netzanbindung zu veranschlagen sind. Bei diesen
Prognosen stellt sich die Frage, ob sie in konkreter Erwartung zukünftiger technischer Fortschritte gestellt werden, oder ob sie lediglich an den Kosten konkurrierender Techniken orientiert sind, die als Maßstab für die Wirtschaftlichkeit dienen. Zum Vergleich: Gasturbinen-Anlagen und Motor-BHKW liegen im Kostenbereich von 1.500-2.500 DM/kW\(_e\) (Wagner/König 1997).

Tab. 13: Preise für PEMFC

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Jahr</th>
<th>Leistung (kW(_{el}))</th>
<th>Betrieb</th>
<th>Kosten in US$/kW(_{el})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballard PS, Kanada</td>
<td>1991</td>
<td>5</td>
<td>H(_2)/Luft</td>
<td>53.000</td>
</tr>
<tr>
<td>Ballard PS, Kanada</td>
<td>1993</td>
<td>5</td>
<td>H(_2)/Luft</td>
<td>10.000</td>
</tr>
<tr>
<td>Siemens, Deutschland</td>
<td>1992</td>
<td>34</td>
<td>H(_2)/O(_2)</td>
<td></td>
</tr>
<tr>
<td>Siemens, Deutschland</td>
<td>1996</td>
<td>34</td>
<td>H(_2)/O(_2)</td>
<td></td>
</tr>
<tr>
<td>DeNora Permelec, Italien</td>
<td>1995</td>
<td>5</td>
<td>H(_2)/Luft</td>
<td>18.000</td>
</tr>
<tr>
<td>Energy Partners, USA</td>
<td>1994</td>
<td>10</td>
<td>H(_2)/O(_2)</td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Staschewski 1996

Bei den modular aufgebauten Systemen zur Energiegewinnung aus Biomasse können durch Serienfertigungen die Produktionskosten auf ein Zehntel fallen, wenn das Produktionsvolumen um den Faktor 100 bis 1.000 ansteigt. Dementsprechend wird eine erhebliche Kostenabsenkung für möglich gehalten, wenn der Sprung in die Serienfertigung von PEMFC, MCFC oder SOFC gelingt. Hierbei ist jedoch zu vermerken, daß die neuen Generationen der Brennstoffzellen sich (bis auf die PAFC) noch in der Entwicklung (SOFC) befinden bzw. an der Schwelle zur Demonstrationsphase (PEMFC und MCFC) stehen, was die Festlegung des endgültigen Zeitpunktes einer Markteinführung und Serienproduktion schwierig macht.

5. Umweltaspekte

unter den Kosten für GuD-Anlagen mit integrierter Wirbelschichtvergasung unter erhöhtem Druck (Tab. 9). Bei diesem Vergleich ist allerdings zu berücksichtigen, daß bei den Kosten für die PEMFC von Preisen ausgegangen wurde, die einer Serienfertigung der Brennstoffzellen entsprechen.

5. Umweltaspekte

Die Art und Menge an relevanten Emissionen aus Anlagen zur Wärme- und Stromgewinnung mit integrierter Biomassevergasung ist abhängig

- von der Zusammensetzung des Biobrennstoßs,
- vom Vergasertyp und den Betriebsbedingungen,
III. Stand der Biomassevergasung

- vom Aufwand zur Gasreinigung
- und von der Art der Gasnutzung.

Je höher der Wirkungsgrad bei der Umwandlung von Biomasse in Wärme und vor allem in Strom ist, um so geringer sind der Brennstoffverbrauch und die CO$_2$-Ersparnisse pro substituierter fossiler Energieeinheit. Die Brennstoffzellen- systems können aufgrund ihrer potentiell höheren Wirkungsgrade mehr CO$_2$ pro verbrauchter Brennstoffeinheit bzw. pro erzeugter Energieeinheit substituieren als andere Gasnutzungssysteme mit integrierter Biomassevergasung.

Bei gleichem Reinigungsaufwand werden die Emissionen von Schwefel- und Halogenverbindungen maßgeblich von der Brennstoffzusammensetzung beeinflußt. Der Halogengehalt der Biobrennstoffe hängt mit den Aufwuchsbedingungen zusammen. Stroh besitzt z.B. sehr hohe Chlorgehalte, wenn das Getreide mit Kaliumchlorid gedüngt wurde. Die Biobrennstoffe enthalten teilweise relevante Mengen an Stickstoff, so daß die erzeugte Menge an Ammonium und anderen problematischen Stickstoffverbindungen und potentiellen NO$_X$-Vorläufern ein unerwünscht hohes Niveau erreichen kann. Die Gehalte an NO$_X$ und anderen Schadstoffen im Abgas aus der motorischen Gasnutzung sind jedoch nicht nur vom Stickstoffgehalt des Biobrennstoffs abhängig. Auch das Gasgemisch (je fetter, desto mehr NO$_X$) und der Zündzeitpunkt (je später, desto weniger NO$_X$) beeinflussen die NO$_X$-Emissionen.

Die in Abbildung 10 am Beispiel einer erdgasbetriebenen Phosphorsauren Brennstoffzelle dargestellten Emissionen einer Brennstoffzelle zeigen, daß die Emission an NO_x, CO und Kohlenwasserstoffen um eine Größenordnung niedriger sind als die zukünftig erwartbaren Emissionswerte von Gasmotoren und Gasturbinen. Die CO-Emissionen liegen, auch im Teillastbereich, zwischen 10 und 20 mg/Nm³, die NO_x-Emissionen zwischen 2 und 5 mg/m³ und die Kohlenwasserstoffemissionen (NMHC) unter 1 mg/m³ (Beckervordersandforth 1996). Auch für die anderen Brennstoffzellentypen sind ähnliche geringe Emissionen zu erwarten.

Abb. 10: Emissionsgrenzwerte und Emissionswerte für Gasmotoren, Gasturbinen und PAFC 25-KHKW

Bei Absenkung der Gastemperatur vor einer motorischen Nutzung des Gases oder vor der Komprimierung des Gases, das anschließend in einer Gasturbine genutzt werden soll, fallen, je nach Restfeuchte des eingesetzten Brennstoffes und Menge an Wasserdampf, der zur Vergasung zugegeben wurde, unterschiedliche Mengen an kondensierbarem Wasser an. Die Wassermenge, die beim Abkühlen des heißen Rohgases von ca. 700°C auf unter 100°C ca. 50°C
III. Stand der Biomassevergasung

anfällt, kann zwischen 0,34 kg und 1,34 kg pro kg Brennstofftrockenmasse liegen (Schulze-Lammers 1985).

IV. Situation der Stromgewinnung aus Biomasse

Die Chancen für Systeme zur Stromgewinnung aus Biomasse über den Weg der Vergasung hängen nicht nur vom technischen Entwicklungsstand der Vergasung, Gasreinigung und Gasnutzung ab. Auch die rechtlichen und ökonomischen Rahmenbedingungen sowie der Wärme- und Strombedarf spielen dabei eine entscheidende Rolle. Nachfolgend sollen deshalb die gegenwärtige Situation und die Perspektiven für Strom aus Biomasse im In- und Ausland betrachtet werden.

1. Situation im Inland

Der Anteil des Stroms aus Holz und anderer Biomasse am inländischen Stromverbrauch liegt derzeit bei 0,044 %. Dabei handelt es sich vor allem um die Verstromung von Industrierestholz sowie Rinden und anderen Abfällen aus der Be- und Verarbeitung von Holz. Der gegenwärtige Anteil von Strom aus
Biomasse könnte vom verfügbaren Aufkommen an Biomasse her auf 7-11 % ausgeweitert werden, sofern der Kreis der förderwürdigen Biomassen weiter ausgedehnt wird und die Wärme- und Stromgewinnung daraus insgesamt verstärkt gefördert wird (Wintzer et al. 1996).

2. Beispiele für die Situation im Ausland

In Österreich ist der Anteil der Biomasse an der Energieerzeugung relativ hoch (Abb. 11). Die Biomasse wird größtenteils zur Erzeugung von Nah- und Fernwärme (300 Anlagen im Bereich von meist 1-2 MWₐ), von Prozeßenergie für die Holzindustrie (2.300 Anlagen mit ca. 1 MWₐ) und zur privaten Raumheizung (15.000 Öfen in der Größenklasse 40 kWₐ) genutzt. Nur in wenigen Anlagen wird über Dampfmotoren oder Dampfturbinen Strom erzeugt, da die Stromerzeugungskosten 3-5mal höher sind als bei konventioneller Stromproduktion (Podesser 1996).

In den Niederlanden ist mit einer zunehmenden energetischen Nutzung von organischen Abfällen, deren Deponierung nach einer Übergangsphase verboten sein wird, zu rechnen. In jüngster Zeit sind außerdem verschiedene Regelungen (Grüne Fonds, Energiesteuern und sogenannte grüne Strompreise) vereinbart worden, die gute Voraussetzungen für eine positive Entwicklung des Marktes für Anlagen zur Stromgewinnung aus Biomasse bieten. Beispielsweise wird das private Einkommen von Investitionen für Anlagen zur Energieerzeugung aus regenerativen Energieträgern nicht versteuert. So wird es möglich, über sogenannte Grüne Fonds günstige Kreditkonditionen zur Errichtung der Anlagen zu bekommen. Eine finanzielle Hilfe stellen auch die Energiesteuern auf Strom und Erdgas dar, die von Haushalten und kleinen Unternehmen zu zahlen sind, wenn ihr Verbrauch eine bestimmte Menge (800 kWh/a) übersteigt. Im Falle eines Einsatzes regenerativer Energieträger wird diese Steuer von den EVU
nicht an den Staat, sondern an die Erzeuger der regenerativen Energie ausbezahlt.

Die Ausführungen zeigen, daß die grundsätzlichen Gegebenheiten und Potentiale für die bestehenden mittel- bis langfristigen Aussichten der Systeme zur Vergasung von Biomasse mit anschließender Verstromung des Gases in Deutschland und innerhalb Europas im Bereich der organischen Rest- und Abfallstoffe nicht schlecht sind. Gleichzeitig muß man jedoch feststellen, daß es nur Nischenbereiche gibt, in denen die Wirtschaftlichkeit derartiger Systeme erreicht oder nahezu erreicht ist. Ohne eine verstärkte indirekte Honorierung der Umweltvorteile wird dies auf absehbare Zeit auch so bleiben.

In bestimmten Ländern des außereuropäischen Auslandes, insbesondere in den aufstrebenden, wirtschaftlich kräftig wachsenden Entwicklungs- und Schwellenländern, sind einige Standortgegebenheiten für die Stromerzeugung aus Biomasse günstiger als in Deutschland und den meisten anderen europäischen Ländern. Eine finanzierbare Gas- oder Stromversorgung auf der Basis von Biomasse oder anderen regional verfügbaren regenerativen Energieträgern könnte in solchen Ländern den weltweit vorherrschenden Trend zur Urbanisierung und zur Entvölkerung ländlicher Regionen abschwächen und einen Beitrag zur Lösung der damit verbundenen sozialen und ökologischen Probleme leisten.

3. Konsequenzen

Angesichts des technischen Vorsprungs der skandinavischen Länder bei der Vergasung von Biomasse im Bereich mittlerer (> 2 MWₑ) und größerer Anla-
IV. Situation der Stromgewinnung aus Biomasse

gen besteht die Gefahr, daß deutsche Unternehmen bei der Ausschöpfung des langsamen zuwachsenden Marktes für Biomassevergaser eine zweitrangige Rolle spielen werden, obwohl Deutschland auf dem Gebiet der Kohlevergasung über Jahrzehnte eine Spitzenposition hatte und nahezu alle Biomassevergasungssysteme auf Entwicklungen aus der Kohlevergasung basieren. Auch für den Bereich der hochwertigen Komponenten, die in Deutschland hergestellt werden, wie den Gasreinigungsanlagen, Gasturbinen usw., wäre ein Nachziehen des inländischen Standes der Technologieentwicklung von Vergasertypen wünschenswert.

V. Resümee und Ausblick

1. Stand und Entwicklungsperspektiven der Technik

In Verbindung mit Gasmotoren oder Gasturbinen können durch die Biomassevergasung deutlich höhere elektrische Wirkungsgrade von etwa 22-37 % erzielt werden; als dies bei der Biomasse-Verbrennung mit nachgeschalteter Dampferzeugung und Dampfturbine (15-18 %) möglich ist. Für Anlagen mit einer Leistung von 3-20 MWₑ aus erscheint die Stromerzeugung über Gasturbinen und Cheng-Kreislauf oder in GuD-Anlagen mit vorangeschalteter Biomasse-Wirbelschichtvergasung unter atmosphärischem Druck aus technisch-ökonomischer Sicht die derzeit aussichtsreichste Technik. Für BHKW bis etwa 2 MWₑ ist die Gasnutzung in Gasmotoren gegenwärtig interessanter als die Gasturbine. Wegen der Probleme bei der Brennstoffbeschaffung und Logistik kommen Anlagen über etwa 30 MWₑ für die Biomassevergasung in Deutschland kaum in Frage.

In Deutschland und in einigen anderen Ländern wird gegenwärtig die Mitverbrennung von Biomasse in vorhandenen großen Kohlekraftwerken (> 100 MWₑ) untersucht. In solchen Großanlagen lassen sich mit bestimmten Vorteilen gegenüber Biomasse-Feuerungen auch Biomasse-Vergasungsanlagen integrieren. Die Integration von Vergasungsanlagen für Biomasse in Kohlekraftwerke hätte gegenüber ausschließlich mit Biomasse betriebenen Vergasungsanlagen den Vorteil, daß die Flexibilität gegenüber saisonalen Schwankungen bei der Verfügbarkeit der Biobrennstoffe größer ist, und daß der erforderliche Investitionsaufwand für die Biomassevergasung geringer ist. Es scheint deshalb empfehlenswert, diesen Teilmarkt der Vergasung von Biomasse weiter zu verfolgen.

Durch die Gasnutzung in Brennstoffzellen können auch in kleinen Einheiten und im Teillastbetrieb hohe elektrische Gesamtwirkungsgrade von 25-50 % erreicht werden. Außerdem sind aufgrund des modularen Aufbaus der Brennstoff-

Mit Erdgas betriebene PAFC-BHKW mit Dampfreformer und CO-Konverter werden bereits zur Strom- und Wärmegewinnung in Demo-Anlagen mit 10 kWₑ bis mehreren MWₑ eingesetzt. Die Entwicklung der PAFC ist gegenwärtig am weitesten fortgeschritten. Der Einstieg in die Serienproduktion (Kleinserie) ist erfolgt. Dadurch konnten die Kosten für mit Erdgas betriebene PAFC-BHKW mit 200 kWₑ auf ca. 5.000 DM/kWₑ gesenkt werden. Um die Nachfrage zu steigern und die Markteinführung zu beschleunigen, werden in den USA die Kosten beim Kauf der ersten PAFC-BHKW subventioniert und in Europa Projekte zur Demonstration der Funktionsfähigkeit der PAFC-BHKW gefördert. Durch eine weitere Komponentenverbesserung und Systemvereinfachung, eine weitgehend automatisierte Produktionsweise und eine Ausweitung des jährlichen Produktionsvolumens werden im Laufe der nächsten Jahre Kostenenkungen auf unter 3.000-4.000 DM/kWₑ angestrebt.

Wegen des höheren elektrischen Gesamtwirkungsgrades erscheinen die PEMFC und die Hohebeamtemperatur-Brennstoffzellen (MCFC und SOFC) auf längere Sicht attraktiver als die PAFC. Bei einer Stromerzeugung in Hochelektrotemperatur-Brennstoffzellen mit integrierter Biomassevergasung zur Brennstoffbereitstellung kommt der Vorteil hinzu, daß auf einen apparativ getrennten Schritt zur Wasserstoffanreicherung (über eine CO-Shiftreaktion) vor dem Gascintritt in die Brennstoffzelle verzichtet werden kann. Weitere Vorteile sind, daß beim Einsatz eines allthermen Vergasers das Anodenagakal als Brennstoff für den Brenner des Wärmetauschers genutzt und daß die Abwärme auf einem hohen Temperatureintrag ausgekoppelt werden kann. Für die PEMFC und die MCFC, die an der Schwelle zur Demonstrationsphase stehen, wird innerhalb der nächsten Jahre von einigen Firmen der Schritt in eine Kleinserienproduktion angestrebt. Die SOFC befindet sich dagegen noch in der Entwicklungsphase.

Obwohl bei jeder der genannten Brennstoffzellentypen in den vergangenen Jahren erhebliche Fortschritte bei der Technologieentwicklung gemacht wurden, bleiben bei allen drei Typen noch jeweils mehrere wichtige technische Probleme zu überwinden. Es wird sich noch erweisen müssen, welcher Typ am besten und am schnellsten mit diesen Problemen fertig wird. Die Hauptproblematik der Brennstoffzellen ist ihre mangelnde Wirtschaftlichkeit, gemessen an

2. Schlußfolgerungen

Es erscheint zunächst wichtig, daß der bereits seit langem ausstehende Nachweis erbracht wird, daß das gereinigte Rohgas von geeigneten Holzvergasern untern Praxisbedingungen und im Dauerbetrieb umweltverträglich in Gasmotor-BHKW verwendet werden kann. Für Anlagen mit Leistungen von oberhalb etwa 2-5 MWₘₚ zeichnet sich ab, daß Gasturbinen mit Dampfinjektion (Cheng-Prozeß) oder GuD-Anlagen zur Gasverwendung technische und ökonomische Vorteile gegenüber einer motorischen Gasnutzung in BHKW besitzen. Auch im Falle einer Gasnutzung in Turbinen muß die Verträglichkeit der auf
entsprechende Weise gereinigten Rohgase beim Einsatz in angepaßten Gasturbinen im Dauerbetrieb erst noch demonstriert werden.

Die Entwicklung von speziellen Vergasungstechniken für Stroh und andere Agrobrennstoffe ist, wie in diesem Bericht dargelegt, technisch deutlich schwieriger als die Holzvergasung und erfordert entsprechende Forschungs- und Entwicklungsanstrengungen. Die Integration von Vergasungsanlagen für Biomasse in bestehende Kohlekraftwerke, die mit hohen Wirkungsgraden bei der Stromerzeugung verbunden sind, stellt eine interessante Option (auch für Agrobrennstoffe) dar, die es wert ist, intensiver untersucht zu werden.

Nachfolgend sind die aus den Inhalten des Berichts abgeleiteten Anregungen für verstärkte FuE-Arbeiten schwerpunktmäßig zusammengefaßt:

- Demonstration eines störungsfreien Anlagenbetriebs mit einem integrierten Verfahren zur Biomassevergasung (zunächst Holz), einem Gasreinigungssystem und einer Gasnutzung in Gasmotoren und Gasturbinen im Dauerbetrieb in technischen Versuchsanlagen und danach in Demonstrationsanlagen
- Entwicklung und technische Demonstration von Vergasern für Stroh und andere halmartige Biomassen und zugehörige Gasreinigungsverfahren
- Integration von Anlagen zur Vergasung oder Pyrolyse von Biomasse in bestehende größere Kohlekraftwerke
- Experimentelle Prüfung der Verknüpfung von Verfahren zur Vergasung von Biomasse, zur Gasreinigung und zur Gasnutzung in Brennstoffzellen.

Aussagen zur Wirtschaftlichkeit von Anlagen mit integrierter Biomassevergasung sind gegenwärtig nur mit Vorbehalten möglich, da sie noch nicht durch Praxisanlagen im Dauerbetrieb gestützt werden können. Die Vergasung von Biomasse hat gegenwärtig eine noch ungünstigere wirtschaftliche Ausgangssituation als die energetische Biomasseverwertung über die Verbrennung, da die technisch interessanten Vergasungssysteme in der Entwicklungs- und Demonstrationsphase stecken. Es zeichnet sich jedoch ab, daß technische Fortschritte bei der Entwicklung zuverlässiger Systeme zur Biomassevergasung und effizien-
ten Gasnutzung auch zu wirtschaftlichen Vorteilen gegenüber der Verbrennung führen können. Sie können die Wärme- und Stromgewinnung aus Biomasse jedoch nur dann über die Wirtschaftlichkeitsschwelle heben, wenn sich die Rahmenbedingungen spürbar ändern, beispielsweise durch eine stärkere finanzielle Honorierung der mit der energetischen Nutzung von Biomasse verbundenen Umweltvorteile.

Die Einführung des Stromeinspeisungsgesetzes war angesichts des zunehmend schärfer werdenden Wettbewerbs auf dem Energimarkt durch die Deregulierung der Stromwirtschaft und der anstehenden Umstrukturierung bei den Versorgungsunternehmen ein wichtiger Schritt zur Förderung des Interesses an einer Stromerzeugung aus Biomasse. Bei einer ernsten Bedrohung des Stro-
meinspeisungsgesetzes würden entsprechende Engagements vollständig zum Erliegen kommen. Dann würde der Markt für Biomassevergaser in Deutschland und in Europa auf absehbare Zeit nicht über den Bereich der Behandlung organischer Abfälle (z.B. Prozeßrückstände aus der Zellstoff-, Papier- und Zuckerindustrie) hinauskommen.
Literatur

109

TEKES (Technology Development Centre Finland) (1996): Growing power - Bio-energy technology from Finland. Technology Development Centre, TEKES. Promotion and financial support for technological R&D. Helsinki, Finland

Literatur

Anhang

1. Tabellenverzeichnis

Tab. 1: Vergleich wichtiger Kenngrößen von Gegenstrom- und Gleichstromvergasern ... 16
Tab. 2: Partikel- und Teergehalte im Primärgas aus verschiedenen Vergasertypen ... 30
Tab. 3: Stand der Entwicklung von Stirlingmotoren ... 40
Tab. 4: Tolerierbare Verunreinigungen im Brenngas für Verbrennungskammern von Gasturbinen (Siemens Model VX4.3A) 44
Tab. 5: Chemisch-technische Merkmale von verschiedenen Brennstoffzellen 53
Tab. 6: Anforderungen der Brennstoffzellentypen an die Brenngaszusammensetzung ... 54
Tab. 7: Leistungsbereich und Entwicklungsstand von Festbettvergasern 72
Tab. 8: Anlagen mit Wirbelschichtvergasung zur Wärmeerzeugung 75
Tab. 9: Biomassevergasung in WSF mit Stromerzeugung .. 76
Tab. 10: Wichtige Kenngrößen von verschiedenen Brennstoffzellentypen 79
Tab. 11: Leistungs- und Kostenangaben für EU-Demonstrationsprojekte mit integrierter Biomassevergasung .. 82
Tab. 12: Vergleich der Kosten der Wärmegestehung aus Biomasse und Erdgas 84
Tab. 13: Preise für PEMFC ... 86
2. Abbildungsverzeichnis

Abb. 1: Prinzip eines Gegenstromvergasers .. 14
Abb. 2: Prinzip eines Gleichstromvergasers .. 15
Abb. 3: Prinzip des Juch-Vergasers ... 17
Abb. 4: Prinzip des Zweizonenvergasers .. 19
Abb. 5: Cheng-Prozeß mit integrierter Biomassevergasung 45
Abb. 6: Prozeßschritte zur Wasserstoff- und Methanolgewinnung aus Biomasse ... 48
Abb. 7: Prinzip einer Wasserstoff-/Sauerstoff-Brennstoffzelle 52
Abb. 8: Elektrische Bruttowirkungsgrade verschiedener Stromerzeugungs-
anlagen beim Einsatz von Erdgas als Brennstoff .. 62
Abb. 9: Eingliederung einer Hochtemperaturlernstoffzelle (SOFC) in eine GuD-Anlage mit integrierter Biomassevergasung 67
Abb. 10: Emissionsgrenzwerte und Emissionswerte für Gasmotoren,
Gasturbinen und PAFC 25-KHKW ... 90
Abb. 11: Anteil erneuerbarer Energien am Gesamtenergieverbrauch 94

116
Glossar

Allotherme Vergasung - Vergasungstyp, bei dem die Reaktionsenergie, die für den Vergasungsprozeß benötigt wird, extern erzeugt und über Wärmeeintragsflächen in den Vergasungsreaktor eingetragen wird.

Autotherme Vergasung - Vergasungstyp, bei dem die Reaktionsenergie innerhalb des Vergasungsreaktors durch teilweise Oxidation des Brennstoffs erzeugt wird.

Biomasse - die gesamte durch Pflanzen, Tiere und Menschen erzeugte organische Substanz; bei der für energetische Zwecke eingesetzten Biomasse wird unterschieden zwischen land-, forst- und holzwirtschaftlichen Reststoffen sowie speziell angebauten Energiepflanzen.

Brennstoffzelle - Einheit zur direkten, elektrochemischen und flammenlosen Energiegewinnung über die Umwandlung der chemischen Energie reaktiver Stoffpaare in elektrische Energie.

Cheng-Prozeß - Gasturbine mit Dampfinjektion.

DT - Dampfturbine.

EVU - Energieversorgungsunternehmen.

Gegenstromvergaser - Vergasertyp, bei dem sich Brennstoff und Vergasungsmittel in entgegengesetzter Richtung zueinander bewegen, wobei der Brennstoff meist von oben und das Vergasungsmittel von unten in den Reaktor eingebracht werden.

Gleichstromvergaser - Vergasertyp, bei dem die Bewegungsrichtungen von Brennstoff und Vergasungsmittel im Reaktor identisch sind.

GuD - Gas- und Dampfkreislauf.

H, - Unterer Heizwert.

IGGC - Integrated Combined-Cycle Combustion (GuD-Anlagen mit integrierter Biomassevergasung).

KWK - Kraft-Wärme-Kopplung.

MCFC - Molten Carbonate Fuel Cell (Karbonatschmelze-Brennstoffzelle).

MWh - Megawattstunde.

PAFC - Phosphoric Acid Fuel Cell (Phosphorsaure Brennstoffzelle).
Glossar

PEMFC - Proton Exchange Membrane Fuel Cell (Polymermembran-Brennstoffzelle).

Pyrolyse - thermische Spaltung eines Stoffes durch Erhitzen in einer sauerstoffarmen Atmosphäre (Luftabschluß).

Schwachgas oder LHG-Gas (Low Heat Gas) - Gas mit einem niedrigen Heizwert von 5-7 MJ/m³.

SOFC - Solid Oxide Fuel Cell (Oxidkeramische Brennstoffzelle).

Stirlingmotor - Kolbenmaschine, die in einem geschlossenen Kreislauf mit einem in den Zylindern verbleibenden Arbeitgas arbeitet.

Vergasung - Zersetzung eines kohlenstoffhaltigen Brennstoffs durch die Zugabe eines Oxidationsmittels und dessen Überführung in ein brennbares Gas.

Wirbelschichtvergaser - Vergasertyp, bei dem ein Vergasungsmittel oder Träergas durch einen Anströmboden mit Inertmaterial (meist Quarzsand) fließt, dieses aufwirbelt und den zugegebenen Brennstoff von unten umströmt.