Modelling knowledge claims of design methods and their steps, and benchmarking these claims

Juny 28, 2017

Pieter E. Vermaas Philosophy, Delft University of Technology

The challenge

Current design methodology

- there are multiple design methods and tools on the market
- their effectiviness is shown by successful applications
- designers choose among the options by their experience

Future design methodology?

- validation of the effectiveness of methods and tools
- comparison of methods and tools by efficiency
- creating knowledge for choosing among the options

Plan – work in progress

- 1. Set up a framework for considering efficiency using work by Joan van Aken
- 2. Sketch work on creating a basis for comparing methods and tools by efficiency

Plan – work in progress

- 1. Set up a framework for considering efficiency using work by Joan van Aken
- 2. Sketch work on creating a basis for comparing methods and tools by efficiency

- no gentlemen agnosticism from engineering research
- but still somewhat abstract

Step 1: articulation of the knowledge claims

Joan van Aken: algorithmic claims about particular cases:

For a particular design, method, aim, context, et cetera

- design D realizes aim A in context C
- method M enables finding a design D that realizes A in C, by designers with expertise E

- D realizes A in C
- M enables finding D-realizes-A-in-C by designers with E

Step 1: articulation of the knowledge claims

Joan van Aken: algorithmic claims about particular cases:

For a particular design, method, aim, context, et cetera

- D realizes A in C
- M enables finding D-realizes-A-in-C by designers with E

Step 1: articulation of the knowledge claims

Joan van Aken: heuristic claims about generic cases:

For all designs, methods, aims, et cetera

- D1 realizes A1 in C1
- D2 realizes A2 in C2
- D3 realizes A3 in C3 ...
- M5 enables finding D5-real.-A5-in-C5 by designers with E5
- M6 enables finding D6-real.-A6-in-C6 by designers with E6 ...
- {D realizes A in C}
- {M enables finding D-real.-A-in-C by designers with E}

Knowledge claims about effectiveness

Heuristic claims for all designs, methods, aims, et cetera

- {D realizes A in C}
- {M enables finding D-realizes-A-in-C by designers with E}

Claims about effectiveness of a particular D and M

- D realizes A in C1, and also D realizes A in C2, C3, ...
- D realizes A1 in C, and also D realizes A2, A3, ... in C
- M enables finding {D-real.-A-in-C} by designers with E

Knowledge claims about efficiency

- {D realizes A in C}
- {M enables finding D-realizes-A-in-C by designers with E}

Claims about efficiency of a particular D and M

- D1 realizes A in C, but also
 D2 realizes A in C, et cetera
- M1 enables finding {D-real.-A-in-C} by designers with E but also
 M2 enables finding {D-real.-A-in-C} by designers with E et cetera

Knowledge claims about method efficiency

M1 enables finding {D-real.-A-in-C} by designers with E but also M2 enables finding {D-real.-A-in-C} by designers with E et cetera

By introducing additional norms (time, effort, recourses, ...) one can then benchmark methods in both senses:

- determine which is most efficient
- use one method for improving the other

But is this feasible in design research?

M1 enables finding {D-real.-A-in-C} by designers with E but also M2 enables finding {D-real.-A-in-C} by designers with E et cetera

By introducing additional norms (time, effort, recourses, ...) one can then benchmark methods in both senses:

- determine which is most efficient
- use one method for improving the other

A first phase

Fix the generic knowledge claims of steps in design methods

A first phase

Fix the generic knowledge claims of steps in design methods

Step	Aims	Means	Criteria
Archaeology	An understanding of the past history of the problem situation	Invite presentations on the problem situation by experts – analyse the role of the problem owner, past attempts to solve it, and what could have happened if another path was taken	Archaeology should capture: - Tensions or competing interests and values - Flexible and non- negotiable boundaries that can limit solutions
Paradox	An identification of the two most competing needs that cannot exist together	Think of tensions and opposing forces that make the problem hard to solve	Paradox should capture opposing needs that prevent the problem owner from moving forward
Context	A description of the stakeholders who have been involved with the problem situation and/or will be involved in its solution	Discuss current strategies and values and needs of stakeholders	Context should: - Contain powerful or controversial stakeholders - Identify significant influences on their behaviour

Knowledge claims about method steps

S1 enables finding X by designers with E but also S2 enables finding X by designers with E et cetera

By introducing additional norms one can benchmark method steps and design tools in both senses:

- determine which is most efficient
- use one for improving the other