

The Value of Modeling in Systems Engineering and Design

Chris Paredis

Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering H. Milton Stewart School of Industrial and Systems Engineering Director, Model-Based Systems Engineering Center chris.paredis@me.gatech.edu

Context: Framing SE&D

A normative perspective:

Can we understand and explain why engineers use models and argue for how they should use models?

- What is a model?
- Why do engineers model?
- What kinds of models do engineers use?
- Which models should engineers use?

Framing Systems Engineering & Design SE&D is a Process with a Purpose... Maximizing Value

- "Everyone designs who devises courses of action aimed at changing existing situations into preferred ones" — Herbert Simon, The Sciences of the Artificial
- How do engineers change existing situations?
 → By creating or improving artifacts...
- Value is a measure of preference
 - The most preferred outcome is assigned the largest value
 - \rightarrow Aim to maximize value

SE&D is a purposeful search for value

Models Add Value in SE&D

Models Enable Efficient Search for Valuable Artifacts

Vision

Reality

If you fail to plan, you are planning to fail!

Benjamin Franklin

Potential Value Opportunity

Models for Planning & Prediction

Valuable Artifact

https://lotusproactive.wordpress.com/2013/01/15/determiningthe-crashworthiness-of-a-lightweight-vehicle/

http://cuicardeeporange.com/project/do4/

MBSE Center

SE&D as Learning

Strategy: Incremental Refinement & Uncertainty Reduction

Potential Value Opportunity

Models for Planning & Prediction

Valuable Artifact

https://lotusproactive.wordpress.com/2013/01/15/determiningthe-crashworthiness-of-a-lightweight-vehicle/

2016 Copyright © Georgia Tech. All Rights Reserved.

MBSE Center

http://cuicardeeporange.com/project/do4/

SE&D in an Organizational Context

Strategy: Divide & Conquer through Decomposition & Delegation

- No individual has all the knowledge about the system... instead, many individuals have deep knowledge about different, specialized aspects of the system
 - How do we integrate all the knowledge such that we develop successful, valuable systems?
 - \rightarrow distributed cognition, decomposition, delegation

Summary: Framing SE&D Efficient Learning in an Organizational Context

PlanActVisionLearnRealityEngineering
OrganizationReflectObserve

Potential Value Opportunity

Valuable Artifact

https://lotusproactive.wordpress.com/2013/01/15/determiningthe-crashworthiness-of-a-lightweight-vehicle/

http://cuicardeeporange.com/project/do4/

Context: Framing SE&D

A normative perspective:

Can we understand and explain why engineers use models and argue for how they should use models?

What is a model?

- Why do engineers model?
- What kinds of models do engineers use?
- Which models should engineers use?

What is a Model?

- Definition by F. Cellier based on M. Minsky:
 A model (M) for a system (S) and an experiment (E) is anything to which E can be applied in order to answer questions about S
- In an SE&D context:

Models are artifacts — expressions of human thought...about the artifacts being engineered, most commonly in a (formal) modeling language

Why Do Engineers Model?

Formally expressing and representing thoughts help with...

- Communication
- Memorization
- Ideation
- Inference or reasoning
- Decision making

- Understanding, explaining & theorizing
- Learning

Why Do Engineers Model?

Formally expressing and representing thoughts help with...

- Communication
- Memorization
- Ideation

- Understanding, explaining & theorizing
- Learning

Modeling as a Transformation Process

Incrementally and collaboratively refining a plan

Context: Framing SE&D

A normative perspective:

Can we understand and explain why engineers use models and argue for how they should use models?

- What is a model?
- Why do engineers model?
 - What kinds of models do engineers use?
- Which models should engineers use?

What Kinds of Models Do Engineers Use? Descriptive Models — Describe What Is

- Examples
 - Describe what is measured or observed
 - Describe what is preferred
- Purpose of descriptive models
 - To "change existing situations into preferred ones," it is important to be able to describe the situation as-is
 - To enable communication among stakeholders
 - To provide context for reasoning about to-be states
- Nature
 - Reflects what is observed
 - Requires a conceptualization, ontology language & vocabulary
 - Propositions could be true or false

What Kinds of Models Do Engineers Use? Prescriptive Models — Prescribe What Shall Be

- Examples
 - Requirement models
 - Functional models
 - CAD models prescribe geometry
 - Behavior specification models
- Purpose of prescriptive models
 - Specification of a plan for how to move from the current situation to a different/improved situation
- Nature
 - Reflects what is imagined not observed
 - Reflects a choice not a true/false proposition
 - Constrains, directs, and guides future SE&D actions

What Kinds of Models Do Engineers Use? Predictive Models — Predict What Will Be

- Example
 - Predict the cost or performance of an artifact
 - Predict how the state of a system will evolve over time
- Purpose of predictive models
 - To reason consistently about the consequences of a prescribed plan executed in a described context
 - Is indispensable for efficient search
- Nature
 - Reflects a believe
 - Is inherently uncertain we are not clairvoyant
 - But should be coherent internally consistent, but also externally consistent with scientific knowledge
 - Engineers rely on the generality of scientific knowledge to predict future situations in new contexts
 - But engineers don't necessarily care about making (the most) accurate predictions good enough to make a good choice

What Kinds of Models Do Engineers Use? Models of Heuristics — Suggest How to Get There

- Example
 - When designing an outer-planets spacecraft, rely on nuclear energy rather than solar
 - When designing a consumer-product, first aim to understand the value proposition to the user — empathize
- Purpose
 - To provide guidance based on previous experience, it suggests how to act in particular context
- Nature
 - Reflects learning engineering knowledge
 - When engineers search, they capture knowledge about the search space and about how to search efficiently
 - Often suggests how to use scientific models to achieve engineering goals
 - Could become prescriptive e.g., a handbook of best practices

Context: Framing SE&D

A normative perspective:

Can we understand and explain why engineers use models and argue for how they should use models?

- What is a model?
- Why do engineers model?
- What kinds of models do engineers use?
 Which models should engineers use?

Which Models **Should** Engineers Use?

The Models that Add the Most Valuable

- Goal of engineering is to add value to arrive at more preferred situations efficiently
 - → A good engineering model supports the addition of value efficiently
- Do we care whether it is "right" or "valid"?
- In the end, I care whether it "works," i.e., "adds value"
- Difficult to know in advance which models add most value → rely on heuristic

Summary

- It is human nature to aim to improve one's situation
- Since the resources needed to improve a situation are valuable themselves, engineers aim to arrive at improved situations efficiently
- Models add value by allowing engineers to expand their cognitive abilities (as a team), and hence to search for improved situation more systematically and efficiently
- Models serve different purposes in search for value
 - Descriptive models describe existing situations
 - Prescriptive models specify plans for future situations
 - Predictive models predict the consequences of the plans
 - Models of heuristics capture what we have learned